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Abstract

In this note, we discuss the nonlinear stability in exponential time of Minkowki space-time
with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry,
the 3 + 1 vacuum Einstein equations reduce to the 2 + 1 Einstein equations with a scalar field.
We work in generalized wave coordinates. In this gauge Einstein equations can be written as
a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the
decay in 1√

t
of free solutions to the wave equation in 2 dimensions, which is weaker than in

3 dimensions. As in [21], we have to rely on the particular structure of Einstein equations in
wave coordinates. We also have to carefully chose an approximate solution with a non trivial
behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like
infinity.

1 Introduction

1.1 Einstein equations

The equations of general relativity, introduced by Einstein in 1915, link the geometry of space-time
to the distributions of matter and fields present in the universe. The space-time is described by a 4
dimensional manifoldM, equipped with a Lorentzian metric g, that is to say a metric of signature
(−1, 1, 1, 1). Einstein equations can be written

Rµν −
1

2
gµν = Tµν . (1)

The right-hand side Tµν is the energy-momentum tensor, which describes the masses, electro-
magnetic fields and other physical fields arising in the universe. The left-hand side describes the
curvature of our space-time (M, g). More precisely, Rµν is the Ricci tensor and R is the scalar
curvature, which is defined by the trace of the Ricci tensor. The Ricci tensor is a nonlinear second
order operator acting on the metric g.

In the vacuum case, Tµν = 0, Einstein equations can be written

Rµν = 0. (2)

A trivial solution in this case is given by Minkowski space-time R3+1 equipped with the Minkowski
metric

m = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.

This special solution is a flat metric. Its Riemann curvature tensor is zero, and consequently its
Ricci curvature tensor is zero. However, in dimension greater or equal to 4, not all the solutions of
(2) are flat. An efficient way to study the set of solutions of (2) is to formulate Einstein equations
as a Cauchy problem.
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1.2 The Cauchy problem

The Cauchy data for Einstein equations are given by a triplet (Σ, ḡ,K), where Σ is a 3 dimensional
manifold, ḡ is a Riemannian metric on Σ and K is a symmetric 2-tensor, which is heuristically
the data of ∂tḡ. Solving Einstein equations with initial data (Σ, ḡ,K) consists in finding a space-
time (M, g) satisfying (2) such that Σ ⊂ M, ḡ is the restriction of g to Σ, and K is the second
fundamental form of the embedding of Σ intoM.

The initial data cannot be chosen arbitrarily. There are compatibility conditions, known as the
constraint equations, that the initial data (Σ, ḡ,K) must satisfy. More precisely, the equations

R0i = 0, R00 −
1

2
Rg00 = 0,

can be expressed in terms only of the initial data. They can be written

R̄−KijK
ij + (Kh

h)2 = 0,

∂j(K
h
h)−DhK

h
j = 0,

where R̄ is the scalar curvature of ḡ and D is the Levi-Civita connection associated to ḡ.
The constraint equations are a necessary and sufficient condition on the initial data for the

existence of local solutions, as proven in the pioneer result of Choquet-Bruhat and Geroch.

Theorem 1.1 ([7]). For initial data (Σ, ḡ,K) sufficiently smooth and solutions of the constraint
equations, there exists a unique maximal globally hyperbolic developpement, solution of Einstein
vacuum equations.

Finding solutions to the constraint equations is a research area in itself (see the review [4]).

1.3 Stability of Minkowski

Theorem 1.1 is a local result. Due to the nonlinear character of Einstein equations, the local
solutions do not in general extend globally. What could be expected is the stability of special
solutions. In this setting, a fundamental question is the stability of Minkowski solution.

The initial data for Minkowski are (R3, e, 0) where e is the Euclidean metric. In [9], Christodoulou
and Klainerman proved the following : for initial data (R3, ḡ,K) sufficiently smooth, such that ḡ
is closed to e, K small, and asymptotically flat (ḡ tend to e and K tend to 0 with a specified
decay rate), the Cauchy development is geodesically complete, and the solution converges at infin-
ity to Minkowski solution. An other proof of the stability has been given later by Lindblad and
Rodnianski in harmonic gauge (see [21]).

1.4 Einstein equations with a translation symmetry

Einstein equations being a quite difficult nonlinear system, one way to study them and have a
better understanding of their structure is to introduce some symmetries. The translation symmetry,
studied by Choquet-Bruhat and Moncrief in [8] allows to reduce the 3 + 1 dimensional problem
to a 2 + 1 dimensional one. More precisely, we look for solutions of the 3 + 1 vacuum Einstein
equation, on manifolds of the form Σ × Rx3 × Rt, where Σ is a 2 dimensional manifold, equipped
with a metric of the form

g = e−2φg + e2φ(dx3)2,

where φ a scalar function, and g a Lorentzian metric on Σ×R, all quantities being independent of
x3. For these metrics, Einstein vacuum equations are equivalent to the 2 + 1 dimensional system{

�gφ = 0
Rµν = 2∂µφ∂νφ,

(3)
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where Rµν is the Ricci tensor associated to g. Choquet-Bruhat and Moncrief studied the case where
Σ is compact of genus G ≥ 2. In [8], they proved the stability of a particular expending solution.
Here we will work in the case Σ = R2. Then a particular solution is given by Minkowski solution
itself. It corresponds to φ = 0 and g equals to the Minkowski metric in dimension 2 + 1. A natural
question one can ask is the stability of this solution.

In [13] we prove the existence of solutions in exponential time : for initial data for φ in some
weighted Sobolev spaces, of size ε small, there exist solutions to (3) for times t ≤ exp

(
C√
ε

)
. We

recall the definition of weighted Sobolev spaces

‖u‖Hm
δ

=
∑
|β|≤m

‖(1 + |x|2)
δ+|β|

2 Dβu‖L2 .

Theorem 1.2. Let 0 < ε < 1. Let N ≥ 40, 1
2 ≤ δ ≤ 1 and 0 < ρ < 1

2 . Let (φ0, φ1) ∈ HN+1
δ ×HN

δ+1

such that
‖φ0‖HN+1

δ
+ ‖φ1‖HN

δ+1
= ε

There exists a constant C such that if T ≤ exp
(
C√
ε

)
and ε is small enough, there exist a coordinate

system (t, x1, x2) and a solution (φ, g) of (3) on [0, T ]× R2 such that

(φ, ∂tφ)|t=0 = (φ0, φ1),

and we have the estimates
|gαβ −mαβ| . ε,

|gαβ −mαβ| .
ε

(1 + t)
1
2
−ρ
, for r ≤ t

2
,

where mαβ is Minkowski metric on R2+1.

For a more precise statement of Theorem 1.2, we refer to [13].

Comments on this theorem

• The initial data for g must satisfy the constraint equations. The only freedom in this solving
is the choice of the initial hypersurface. The construction of solutions to the constraint
equations for this problem is done in [12].

• The perturbations we consider are not asymptotically flat in 3+1 dimension, since asymptotic
flatness is not compatible with a translation spacelike symmetry.

• The method used to prove this theorem is by using a wave gauge. In this sense it is similar
to Lindblad and Rodnianski proof of the stability of Minkowski.

Outline of this note

• In Section 2, we present the wave coordinate condition, which is a gauge choice which allows
to write Einstein equations as a system of quasilinear wave equations. Then we present
the methods for proving long-time existence for small data for such systems of nonlinear
wave equations. We then exhibit more precisely the structure of Einstein equations in wave
coordinates.
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• In Section 3 we explain how to construct an approximate solution for our system. To give
an intuition, we present first a family of exact radial solutions : Einstein-Rosen waves. We
then explain how to adapt the analysis in the non-radial case. We present the new choice
of coordinates which we need to make to be compatible with the constructed approximate
solution.

• In Section 4 we give a brief outline of the proof of Theorem 1.2, focusing on the main technical
tools which are needed : weighted energy estimate, L∞ −L∞ estimate. We also explain how
the constructed approximate solution is helpful in proving Theorem 1.2, and how it leads to
the restriction to exponential time.

2 Einstein equations in wave coordinates

2.1 The choice of coordinates

In a coordinate system xα, the Ricci tensor is given by

Rµν = −1

2
gαρ∂α∂ρgµν +

1

2
Hρ∂ρgµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) +

1

2
Pµν(g)(∂g, ∂g), (4)

where Pµν(g)(∂g, ∂g) is a quadratic form in ∂g and

Hα = �gx
α = −∂λgλα −

1

2
gλµ∂αgλµ. (5)

The wave coordinate condition (respectively the generalized wave coordinate condition) consists in
imposing Hα = 0 (respecively Hα = Fα a fixed function, which may depend on g but not on its
derivatives).

Proposition 2.1. If the coupled system of equations{
−1

2g
αρ∂α∂ρgµν + 1

2F
ρ∂ρgµν + 1

2 (gµρ∂νF
ρ + gνρ∂µF

ρ) + 1
2Pµν(g)(∂g, ∂g) = 2∂µφ∂νφ

gαρ∂α∂ρφ− F ρ∂ρφ = 0
(6)

with F a function which may depend on φ, g, is satisfied on a time interval [0, T ] with T > 0, if
the initial induced riemannian metric and second fundamental form (ḡ,K) satisfy the constraint
equations, and if the initial compatibility condition

Fα|t=0 = Hα|t=0, (7)

is satisfied, then the equations (3) are satisfied on [0, T ], together with the wave coordinate condition

Fα = Hα.

For a proof of this result, we refer to [22], or the appendix of [13].

2.2 Long-time existence problem for system of nonlinear wave equations

The aim of this section is to give some methods and results on the study of equations of the type
�u = (∂u)p.

We consider first the equation in Rn+1{
�u = 0,
(u, ∂tu)|t=0 = (u0, u1).

(8)
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By multiplying this equation by ∂tu and integrating over R2 we obtain the conservation of
energy ∫

R2

(∂tu)2 + |∇u|2 =

∫
u2

1 + |∇u0|2. (9)

To obtain point-wise decay from the energy estimate, we introduce the following family of vector
fields which are isometries and conformal isometries of Minkowski space-time :

Z = {∂α,Ωαβ = −xα∂β + xβ∂α, S = t∂t + r∂r} .

These vector fields satisfy the following commutation property :

[�, Z] = C(Z)�,

where
C(Z) = 0, Z 6= S, C(S) = 2.

Therefore if �u = 0 then �Zu = 0 and the energy estimate (9) yields∫ ((
d

dt
ZIu

)2

+ |∇ZIu|2
)

(t, x)dx =

∫ ((
d

dt
ZIu

)2

+ |∇ZIu|2
)

(0, x)dx (10)

where ZIu denotes any combination of I vector fields of Z.
The following estimate, called Klainerman-Sobolev inequality gives a more precise information

than Sobolev embedding Hs ⊂ L∞ for s > n
2 , providing we control the L2 norms of ZIu (which

results from (10)). It can be written

(1 + t+ |x|)
n−1
2 (1 + |t− |x||)

1
2 |v(t, x)| ≤ C

∑
|I|≤n

2
+1

‖ZIv‖L2 . (11)

Thanks to this inequality we recover the decay rate u ∼ t−
n−1
2 for a solution of �u = 0. More over,

a simple calculation gives (we note r = |x|)

∂t + ∂r =
S +

∑n
i=1

xi
r Ω0i

t+ r
,

∂t − ∂r =
S −

∑n
i=1

xi
r Ω0i

t− r
.

Consequently, the derivative tangential to the light cone, that we will denote ∂̄, have a better decay
rate given by ∂̄u ∼ t−

n+1
2 .

We now consider a nonlinear problem{
�u = (∂u)p,
(u, ∂tu)|t=0 = (u0, u1),

(12)

with initial data (u0, u1) of size ε small. The energy estimate yields∫
Rn

(∂u)2(t, x)dx ≤
∫
Rn

(∂u)2(t, 0)dx+

∫ t

0

∫
(∂u)p+1(x, s)dxds.

If we suppose a priori estimates compatible with the linear case∫
Rn

(∂u)2(t, x)dx ≤ Cε, |∂u| ≤ Cε

(1 + t)
n−1
2

,
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we obtain ∫
Rn

(∂u)2(t, x)dx ≤
∫
Rn

(∂u)2(t, 0)dx+ Cp+1εp+1

∫ t

0

1

(1 + s)(p−1)n−1
2

ds,

Therefore, if (p− 1)n−1
2 > 1, the space-time integral in the right-hand side converges, which is the

first step to prove global existence (see for example [16] for the case n > 3 and p = 2). In the
opposite case, there are counter-examples to global existence (see [14]).

When the nonlinearity has structure, it is possible to obtain a better result. Let’s assume for
example n = 3 and p = 2 Then we have (p− 1)n−1

2 = 1, and there is not always global existence.
However if we can write the nonlinearity under the form ∂u∂̄u, the energy estimate, together wih
the a priori estimates on tangential derivatives

|∂̄u| ≤ Cε

(1 + t)2
,

yields ∫
R3

(∂u)2(t, x)dx ≤
∫
R3

(∂u)2(t, 0)dx+ C2ε2

∫ t

0

∫
1

(1 + s)2
dxds,

which suggest global existence. It is the case for systems of the form

�ui = P i(∂uj , ∂uk), (13)

where the P i satisfy the null condition, introduced by Klainerman in [15]. This condition consists
in saying that the Pi are linear combinations of the following forms

Q0(∂u, ∂v) = ∂tu∂tv −∇u.∇v, Qαβ(∂u, ∂v) = ∂αu∂βv − ∂αv∂βu.

In 2 + 1 dimensions, to show global existence, one has to be careful with both quadratic and
cubic terms. Quasilinear scalar wave equations in 2 + 1 dimensions have been studied by Alinhac
in [1]. He shows global existence for a quasilinear equation of the form

�u = gαβ(∂u)∂α∂βu,

if the quadratic and cubic terms in the right-hand side satisfy the null condition. Global existence
for a semi-linear wave equation with the quadratic and cubic terms satisfying the null condition
has been shown by Godin in [10] using an algebraic trick to remove the quadratic terms, which
does however not extend to systems. The global existence in the case of systems of semi-linear
wave equations with the null structure has been shown by Hoshiga in [11]. It requires the use of
L∞−L∞ estimates for the inhomogeneous wave equations, introduced in [17] (see also Proposition
4.3).

The null condition is not a necessary condition to obtain global existence. An example is given
by the following system {

�φ1 = 0,
�φ2 = (∂tφ1)2.

(14)

The decoupling allows to solve (14). However, φ2 has the decaying rate φ2 ∼ t−1 ln(t), which is
less than the behaviour in t−1 for the corresponding linear wave equation. It is the same for the
equation

∂2
t u− u∆u,

studied in [18], [2] and [19]. These two examples possess a structure, introduced in [20] called weak
null structure. Lindblad and Rodnianski proved the stability of Minkowski space-time in wave
coordinates by showing that Einstein equations in these coordinates have the weak null structure
(see [21]). The proof of theorem 1.2 is also based on this weak null structure
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2.3 Structure of Einstein equations in wave coordinates

The structure of Einstein equations can be seen when we write them in the null frame L = ∂s,
L = ∂q, U = ∂θ

r , where (r, θ) are the polar coordinates and q = r − t and s = r + t are the null
coordinates. We decompose the metric under the form

g = m+ g̃ + gLLdq
2,

where m is the Minkowski metric. Then, if we neglect all the nonlinearities involving a good
derivative, we obtain the following model system for (3) in wave coordinates

�φ+ gLL∂
2
qφ = 0,

�g̃ + gLL∂
2
q g̃ = 0,

�gLL + gLL∂
2
qgLL = −4(∂qφ)2.

The quadratic terms involving gLL are handled by making use of the wave coordinate condition,
as in [21] : the condition Hα = 0 where Hα is defined by (5) implies ∂qgLL ∼ ∂̄g̃. Therefore, the
quadratic terms involving gLL behave like terms having the null structure. Consequently, we are
left with the model sustem {

�φ = 0,
�gLL = −4(∂qφ)2.

Thanks to the decoupling it is of course possible to solve such a system. However, in 2 + 1
dimensions, for initial data of size ε the energy estimate yields

‖∂gLL‖L2 . ε
√

1 + t,

and the metric coefficient gLL has no decay, not even with respect to q = r− t. This is not enough
to solve the full coupled system. To prove Theorem 1.2 it will be important to look more precisely
at the behaviour which can be expected for our solutions.

3 Construction of approximate solutions

To understand what behaviour may be expected for our solutions, we will look at special solutions
of vacuum Einstein equations with a translation space-like Killing field : Einstein-Rosen waves.
These solutions have been discovered by Beck (see [5], and also [3] and [6] for a mathematical
description).

3.1 Einstein-Rosen waves

Einstein-Rosen waves are solutions of vacuum Einstein equations with two space-like orthogonal
Killing fields : ∂3 and ∂θ. The 3 + 1 metric can be written

g = e2φ(dx3)2 + e2(a−φ)(−dt2 + dr2) + e−2φr2dθ2.

The reduced equations {
Rµν = 2∂µφ∂νφ,
�gφ = 0,

can be written in this setting

Rtt = ∂2
ra− ∂2

t a+
1

r
∂ra = 4(∂tφ)2, (15)

Rrr = −∂2
ra+ ∂2

t a+
1

r
∂ra = 4(∂rφ)2,

Rtr =
1

r
∂ta = 4∂tφ∂rφ.
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The equation for φ can be written, since φ is radial

e2a�gφ = −∂2
t φ+ ∂2

rφ+
1

r
∂rφ = 0,

where g is the metric
g = e2a(−dt2 + dr2) + r2dθ2.

The equation for φ decouples from the equations for the metric. Therefore we can solve the flat wave
equation �φ = 0, with initial data (φ, ∂tφ)|t=0 = (φ0, φ1) and then solve the Einstein equations,
which reduces to

∂ra = 2r
(
(∂rφ)2 + (∂tφ)2

)
, (16)

with the boundary condition φ|r=0 = 0 in order to have a smooth solution. Since �φ = 0, if (φ0, φ1)
have enough decay, we have the following decay estimate for φ

|∂φ(r, t)| . 1
√

1 + t+ r(1 + |t− r|)
3
2

.

Therefore since

a = 2

∫ R

0
r
(
(∂rφ)2 + (∂tφ)2

)
dr

we have

|a| . 1

(1 + |r − t|)2
, for r < t,

|a− 2E(φ)| . 1

(1 + |r − t|)2
, for r > t,

where the energy

E(φ) =

∫ ∞
0

r
(
(∂rφ)2 + (∂tφ)2

)
dr

does not depend on t. For r > t, we have a ∼ E(γ) and hence is only bounded. In particular, the
metric

e2adr2 + r2dθ2

exhibits a deficit angle at space-like infinity, that is to say the circles of radius r have a perimeter
growth of e−2E(φ)2πr instead of 2πr. However, in the interior, the decay we get is far better than
the one we could have found with standard estimates, if we had used (15) instead of (16).

3.2 Asymptotic behaviour

We would like to adapt the analysis of Section 3.1 in the case where we only assume one Killing
field (i.e. in the case where ∂3 is Killing but not ∂θ). Let assume that Einstein-Rosen waves are
still approximate solutions to (3). As in this case φ also depends on θ, we will have

lim
R→∞

a(t, R, θ) =

∫ ∞
0

r
(
(∂rφ)2 + (∂tφ)2

)
dr = b(t, θ).

We have to be careful with the dependence on θ. The metric

e2b(θ)(−dt2 + dr2) + r2dθ2

is no longer a Ricci flat metric when b depends on θ. Consequently it is not a good guess for
the behaviour at infinity of our metric solution g. A good candidate should be Ricci flat in the
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region r > t. Indeed if we considered compactly supported initial data for φ, by finite speed of
propagation, φ should intuitively be supported in the region r < t. Consequently, the equation

Rµν = ∂µφ∂νφ

would imply that g should be Ricci flat for r > t.
To get an intuition of the behaviour of our solution without the additional rotational symmetry,

let’s assume for a moment we had found a coordinate system (not the wave gauge) in which all the
metric coefficients have at least the decay of a solution to the free wave equation. Then we can
compute, on the light cone

RLL = −∂2
qgUU +O

(
ε

(1 + r)
3
2

)
.

Since we also have
RLL = (∂qφ)2 = O

(
ε

1 + r

)
,

we see that the only term which could balance this behaviour is ∂2
qgUU . This leads to introducing

the following family of metrics

gb = −dt2 + dr2 + (r + χ(q)b(θ)q)2dθ2, (17)

where (r, θ) are polar coordinates, q = r − t, χ is a cut-off function such that χ(q) = 0 for q < 1
and χ(q) = 1 for q > 2, and b(θ) is a function of θ that we would like to satisfy

b(θ) =

∫
ΣT,θ

(∂qφ)2rdq,

where ΣT,θ is the half line of fixed angle θ in the hypersurface t = T . A calculation yields that all
the Ricci coefficients of gb are zero except

(Rb)LL = −
b(θ)∂2

q (qχ(q))

r + b(θ)qχ(q)
(18)

Therefore, the metrics gb are Ricci flat in the region r > t+ 2, and correspond to Minkowski metric
in the region r < t+ 1.

3.3 The generalized wave coordinates

This choice of background metric will force us to work in generalized wave coordinates, instead of
usual wave coordinates. Indeed, for the metric gb defined by (17), the coordinates (t, x1, x2) are
not wave coordinates, not even asymptotically. We will choose coordinates xα such that

�gx
α = Hα

b =
def
�gbx

α.

We look for solutions of the form g = gb + g̃. Then (3) can be written{
�gφ = 0,

�g g̃µν = −2∂µφ∂νφ+ 2(Rb)µν + Pµν(g)(∂g̃, ∂g̃) + P̃µν(g̃, gb),
(19)

where Pµν(g)(∂g̃, ∂g̃) is a quadratic form in ∂g̃ and P̃µν(g̃, gb) contains only crossed terms between
g̃ and gb.
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4 Outline of the proof of Theorem 1.2

The proof is based on a bootstrap argument. We take T ≤ exp
(
C√
ε

)
such that there exists a

solution (φ, g = gb + g̃) on [0, T ] such that

• ∂ZIφ and ∂ZI g̃ satisfy weighted L2 estimates for I ≤ N .

• ∂ZIφ and ∂ZI g̃ satisfy point-wise estimates for I ≤ N
2 :

|ZIgLL| ≤
Cε

(1 + |q|)
1
2
−ρ
, |ZI g̃| ≤ Cε

(1 + t+ r)
1
2
−ρ
,

|ZIφ| ≤ Cε
√

1 + t+ r(1 + |q|)
1
2
−4ρ

.

• b(θ) satisfy the estimate ∥∥∥∥∥b(θ) +

∫
ΣT,θ

(∂qφ)2rdr

∥∥∥∥∥
HN−4(S1)

≤ Cε2

√
T
. (20)

To prove Theorem 1.2, we show that we can improve these estimates.

4.1 L2 estimates

To improve the L2 estimates, we use a weighted energy inequality. We consider a weight function
w(q) ≥ 0 such that w′(q) ≥ 0.

Proposition 4.1. We assume that �φ = f . Then we have

1

2
∂t

∫
w(q)

(
(∂tφ)2 + |∇φ|2

)
+

1

2

∫
w′(q)

(
(∂sφ)2 +

(
∂θu

r

)2
)
.
∫
w(q)|f∂tφ|.

The use of weights serves many purposes

• They allow to use some Hardy inequalities in order to estimate the weighted L2 norm of g in
term of the weighted L2 norm of ∂g (with a bigger weight).

• The term in w′(q) in the left-hand-side gives an extra integrability condition for the good
derivatives. It allows to make use of the null structure when we estimate ∂ZNg. This is the
principle of Alinhac ghost weights, used in [1], and also in [21].

• The decomposition of the metric in the null frame does not commute with the wave operator.
It creates terms of the form 1

r ∂̄g. The use of weights permits to trade a growth in
√
t in the

energy estimates of the bad coefficients (namely gLL) into a loss in the weight for the good
coefficients.

4.2 L∞ estimates

We can obtain L∞ estimates from the energy estimates thanks to the weighted Klainerman-Sobolev
inequality. The following proposition, proven in the Appendix of [13], concerns the 2+1 dimensional
case and is the analogous of Proposition 14.1 in [21] for the 3 + 1 dimensional case
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Proposition 4.2. We have the inequality

|f(t, x)w
1
2 (|x| − t)| . 1√

1 + t+ |x|
√

1 + ||x| − t|

∑
|I|≤2

‖w
1
2 (.− t)ZIf‖L2 .

With the condition w′(q) > 0 for the energy inequality, we are not allowed to take weights of
the form (1 + |q|)α, with α > 0 in the region q < 0. Therefore, Klainerman-Sobolev inequality
cannot give us more than the estimate

|∂u| . 1√
1 + |q|

√
1 + s

,

in the region q < 0, for a solution of �u = f . However, we know that for suitable initial data, the
solution of the wave equation �u = 0 satisfies

|u| . 1√
1 + |q|

√
1 + s

, |∂u| . 1

(1 + |q|)
3
2
√

1 + s
.

To recover some of this decay we will use the following proposition.

Proposition 4.3. Let u be a solution of{
�u = F,
(u, ∂tu)|t=0 = (0, 0).

For µ > 3
2 , ν > 1 we have the following L∞ − L∞ estimate

|u(t, x)|(1 + t+ |x|)
1
2 ≤ C(µ, ν)Mµ,ν(F )(1 + |t− |x|||)−

1
2

+[2−µ]+ ,

where
Mµ,ν(F ) = sup(1 + |y|+ s)µ(1 + |s− |y||)νF (y, s),

and where we used the convention A[α]+ = Amax(α,0) if α 6= 0 and A[0]+ = ln(A).

This is proven in the appendix of [13]. This inequality has been introduced by Kubo and Kubota
in [17].

4.3 Estimation of gLL : transport equation

With our new decomposition g = gb + g̃, the model problem for gLL becomes{
�φ = 0,

�gLL = −4(∂qφ)2 − 4b(θ)
∂2q (qχ(q))

r .
(21)

In this paragraph, we focus on this model problem. The analysis can be well adapted to the
quasilinear case. To obtain some decay for gLL, we will approximate it by the solution h0 of the
following transport equation

∂qh0 = −4r(∂qφ)2 − 4b(θ)∂2
q (qχ(q)). (22)

We recall the estimates satisfied by φ, solution of the free wave equation with regular enough initial
data of size ε :

‖∂φ‖L2 ≤ ε, |∂φ| ≤ ε
√

1 + t+ r(1 + |q|)
3
2

.
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Consequently (22) yields ∂qh0 = O
(

ε2

(1+|q|)3

)
. Moreover, we may express the d’Alembertian in

coordinates s, q, θ

� = 4∂s∂q +
1

r
(∂s + ∂q) +

1

r2
∂2
θ . (23)

Therefore, using the fact that φ satisfy �φ = 0 we obtain

∂s∂qφ ∼ ∂φ∂̄φ = O

(
ε2

(1 + s)2(1 + |q|)2

)
.

Consequently, by integrating this estimate with respect to q we obtain

∂sh0 = O

(
ε2

(1 + s)2

)
. (24)

To estimate h0 itself, we need to use the condition on b, to compensate the integral of (∂φ)2 which
would lead to an estimate h0 = O(ε2) in the region q < 0. If b(θ) =

∫
ΣT,θ

(∂qφ)2rdr, by integrating
the transport equation (22) at t = T , and then (24) at fixed q we obtain

h0 = O

(
ε2

(1 + |q|)

)
. (25)

The same estimate is also satisfied by ∂θh0 and ∂2
θh0. Consequently, thanks to (23) we may calculate

�h0 =
∂qh0

r
+O

(
ε2

(1 + |q|)(1 + s)2

)
= −4(∂qφ)2 − 4b(θ)

∂2
q (qχ(q))

r
+O

(
ε2

(1 + |q|)(1 + s)2

)
and thanks to Proposition 4.3, we obtain

gLL = h0 +O

(
ε2

(1 + s)
1
2 (1 + |q|)

1
2
−ρ

)
,

which is better that what we would have obtained by applying directly Proposition 4.3 to (21).
By taking into consideration the quasilinear terms, we are led to a loss in

√
1 + |q| in our

estimates, which yields the pointwise estimate of Theorem 1.2.

4.4 Improvement of the estimates for b(θ) and restriction to exponential time

In this paragraph we briefly explain how to improve the estimates for b. The procedure is different
for the three first coefficient in the Fourier extension∫

b(θ)dθ,

∫
b(θ) cos(θ)dθ,

∫
b(θ) sin(θ)dθ, (26)

and for the remaining. The coefficients (26) can not be chosen arbitrarily. They correspond to the
asymptotic deficit angle and linear momentum and are imposed by the resolution of the constraint
equations (see [12]). We can obtain an estimate of the type of (20) by integrating the constraint
equations on the hypersurface t = T . The improvement for the remaining is done with an iteration
process. The restriction to exponential time comes from the following fact : we have a small growth
in the higher energy norms :

‖∂ZNφ‖L2 . ε(1 + t)C
√
ε.

Consequently, if we set b(θ) =
∫

ΣT,θ
(∂qφ)2rdr we obtain

‖∂Nb(θ)‖L2 ≤ ε2(1 + T )C
√
ε,

which lead us to assume T ≤ exp
(
C√
ε

)
.
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