
Wave equations and general relativity

Cécile Huneau

March 8, 2024



2



Chapter 1

Introduction

General relativity is a theory of gravitation, introduced by Einstein in 1915, which relies on deep
mathematical concepts. To have a first flavour, we will make a parallel with electromagnetism.

1.1 Electromagnetism

Before the ninetieth century, the electrical and magnetic forces where thought to be independent
phenomena. The Coulomb law of electrostatics says that the force FAB applied by a charge qA,
situated at a point A, on a charge qB , situated at a point B, is given by

FAB =
qAqB

4πε0r2
u,

where r = |AB| and u =
−−→
AB
r . Poisson expressed later this law in term of an electric potential V ,

created by a density of charge ρ. The electric force which acts on the point charge (B, qB) is then
−qB∇V where V satisfies the Poisson equation

∆V = − ρ

ε0
.

This equation was then completed by three others, to obtain the full set of Maxwell equations which
describe the classical theory of electromagnetism

∇∧ E = −∂B
∂t

Faraday’s law,

∇∧B = µ0j + µ0ε0
∂E

∂t
Ampère-Maxwell’s law,

∇.E =
ρ

ε0
Coulomb’s law,

∇.B = 0 Gauss’s law.

From these equations, one can show that E and B satisfy wave equations

∂2
tE − c2∆E = 0,

∂2
tB − c2∆B = 0.
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The electromagnetic waves propagate with a speed c, which is a constant independent of the choice
of inertial frame. This fact was a contradiction with Newtonian mechanics, and led to the theory
of special relativity, formulated by Einstein in 1905. In this theory, space and time are described
by Minkowski space-time : this is R4 equipped with a quadratic form

m = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2.

In Minkowski space-time, which is a particular example of Lorentzian manifold, the causal future
of a point, which is the set of points which can be reached without going faster than the speed of
light, is a cone.

1.2 Gravitation

Before general relativity, gravitation was modelled by Newton’s law. A point mass (A,mA) acts on
a point mass (B,mB) through the force

FAB = −GmAmB

r2
u.

This can be expressed in term of the gravitational potential φ. The force applied by a density of
mass ρ on a point mass (B,mB) is −mB∇φ, where φ satisfy the Poisson equation

∆φ = 4πGρ.

In Newton’s universal law of gravitation, the mass mA acts at distance on the mass mB , which is
an apparent contradiction with special relativity. One can note that in electrostatics there is also
a principle of action at a distance. However when Coulomb law is completed with the whole set of
Maxwell equations, we see that the propagation of the electromagnetic field obeys wave equations
with speed c. For gravitation, the resolution of this paradox has been done by Einstein in 1915
through a revolutionary change of point of view : the theory of general relativity. In this theory,
the gravitation is not a force but is encoded in the geometry of the space-time, which is described
by a Lorentzian manifold (M, g) : the bodies subject only to the gravitation follow the geodesics
in this new geometry. The Lorentzian metric g must obey Einstein equations

Rµν −
1

2
Rgµν =

8πG

c4
Tµν .

In these equations, Rµν describe the curvature of the space-time, and Tµν is the stress energy
tensor : its form depends on the fields which are considered. Newton’s equation is not part of
Einstein equations, but it can be obtained by taking well chosen limits.

Einstein equations are invariant by change of coordinates. In a particular set of coordinates, they
can be written as wave equations on the metric coefficients. In general relativity, the deformations
of space-time propagate in the form of gravitational waves with the speed of light.

The aim of this course is

• to introduce the geometrical notions which are fundamental in General Relativity,

• to have a first approach on the physical meaning and implication of the theory,
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• to see that studying general solutions to Einstein equations consist in solving evolutionary
partial differential equations,

• to introduce the analytical background necessary to solve wave equations, and therefore Ein-
stein equations.

We refer to the book [8] and [6] for more details on Riemannian geometry, and to [7] for Lorentzian
geometry. We refer to [9] and [3] for a complete introduction to General Relativity and we refer
to [4] and [1] for more details on the solving of partial differential equations. We also refer to the
following lectures notes :

• Jacques Smulevici : Lectures on Lorentzian Geometry and hyperbolic pdes,

• Jérémie Szeftel : Introduction à la relativité générale d’un point de vue mathématique,

• Jonathan Luk : Introduction to Nonlinear Wave Equations.
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Chapter 2

Riemannian geometry

In this chapter we will introduce the notions of geometry which are needed to formulate Einstein
equations and to study them. These notions are useful in many areas of mathematics, so we will
introduce a very general setting in this chapter.

2.1 Manifolds

In general relativity the space-time is a differential manifolds. It is a topological space which is
locally identified with Rn. Let us be more precise.

2.1.1 Charts and atlas

Definition 2.1.1. Let M be a topological space. A topological atlas of dimension n is a family
(Ui, φi) such that

• Ui are open,

• ∪Ui = M

• φi : Ui → Ωi where Ωi is an open set of Rn is an homeomorphism.

The map φi is called chart or coordinate system, the set Ui is the domain of the chart and the maps
φi ◦ φ−1

j are called change of charts.

Definition 2.1.2. A topological manifold M of dimension n is a topological Haussdorff space
(séparé) equipped with a countable atlas.

Proposition 2.1.3. A topological manifold is locally compact, locally path connected, separable,
paracompact, metrizable.

Remark 2.1.4. We can define the notion of atlas for M a general set. It is a family of pairs
(Ui, φi) such that

• Ui ⊂M and ∪Ui = M ,

• ∀i φi : Ui → Ωi, with Ωi an open set of Rn

7
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• ∀i, j : φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj) is an homeomorphism.

The data of an abstract atlas on M yields a topology on M : U is open if for all Uj, φj(Uj ∩ U) is
open in Rn. If this topology is Haussdorff, and if I is countable, we obtain a structure of manifold
on M .

An atlas {Ua, φa} is called smooth if all chart transitions

φb ◦ φ−1
a : φa(Ua ∩ Ub)→ φb(Ua ∩ Ub)

are differentiable of class C∞. Two atlases are equivalent if their union is still an atlas.

Definition 2.1.5. A differentiable manifold is a topological manifold which admits a smooth atlas.
A smooth structure is an equivalence class of smooth atlases

We can also define Ck manifolds by requiring that the transition map φb ◦ φ−1
a are Ck where

they are defined.

The example of the sphere The sphere Sn = {(x1, .., xn+1) ∈ Rn+1,
∑n+1
i=1 (xi)2 = 1} is a

differentiable manifold. One can define charts (Ui, φi), i = 1, 2 as follows. On U1 = Sn \ {0, .., 0, 1}
we define

φ1(x1, .., xn+1) =

(
x1

1− xn+1
, ..,

xn

1− xn+1

)
,

and on U2 = Sn−1 \ {(0, .., 0,−1)} we define

φ2(x1, .., xn+1) =

(
x1

1 + xn+1
, ..,

xn

1 + xn+1

)
.

We can check that (Ui, φi)i=1,2 is a smooth atlas on the sphere.

Definition 2.1.6. Let (M,N) be two differentiable manifolds, of dimension d and d′. A map
h : M → N is Ck if for all charts (Ua, φa) on M and (Vb, ψb) on N , the map ψb ◦ h ◦ φ−1

a is of
class Ck on the open set of Rd where it is defined.

Remark 2.1.7. Since the transition map are smooth, to check whether a map h : M → N is Ck,
it is sufficient to prove that for all p ∈ M there exists a chart (Ua, φa) with p ∈ Ua, and a chart
(Vb, ψb) with h(p) ∈ Vb such that ψb ◦ h ◦ φ−1

a is Ck.

2.1.2 Submanifolds

Definition 2.1.8. Let M be a d dimensional manifold. A subset X of M is a submanifold of
dimension d′ if for every point x ∈ X, there exists a chart (U, φ) of M with x ∈ U such that
φ(X ∩ U) = (Rd′ × {0}) ∩ φ(U).

A submanifold N inherits a manifold structure : the charts (Ua, φa) on M induce charts

(X ∩ Ua, πRd′ ◦ φa|X∩Ua)

on X. We remark that the submanifolds of dimension d of M are given by the open sets of M .
More interesting examples are built on submersions and immersions. Let us for the moment consider
immersion and submersion in Rn which will allow us to easily construct examples as submanifolds
on Rn.
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Definition 2.1.9. Let U be an open set of Rd , and let f : U → Rn be a map of class Ck.

• f is an immersion in x ∈ U if its differential in x is injective.

• f is a submersion in x ∈ U if its differential in x is surjective.

Theorem 2.1.10. Let U be an open set of Rd , and let f : U → Rn be a map of class Ck.

• If f is an immersion on all points of U then for all x ∈ U there exists a neighbourhood Ux of
x, a neighbourhood Vf(x) of f(x) and a diffeomorphism ψ : Vf(x) → W of class Ck, with W
an open set of Rn such that for all x ∈ Ux

ψ ◦ f(x1, .., xd) = (x1, .., xd, 0, .., 0).

• If f is a submersion on all points of U then for all x ∈ U there exists a neighbourhood Ux of
x, a neighbourhood Vf(x) of f(x) and a diffeomorphism φ : V → Ux of class Ck, with V an

open set of Rd such that for all x ∈ V

f ◦ φ(x1, .., xd) = (x1, .., xn).

From this theorem, we can obtain the following proposition

Proposition 2.1.11. Let U be an open set of Rd , and let f : U → Rn be a map of class Ck.

• If f is injective, proper, and an immersion on all points of U then f(U) is a submanifold of
Rn of dimension d.

• Let y ∈ Rn. If f−1(y) 6= ∅ and for all x ∈ f−1(Y ) f is a submersion on x then f−1(y) is a
submanifold of Rd of dimension d− n.

Proof. We give the proof of the second point. Let x ∈ f−1(Y ). There exists a neighbourhood Ux
of x, a neighbourhood Vy of y and a diffeomorphism φ : V → Ux of class Ck, with V an open set
of Rd such that for all x ∈ V

f ◦ φ(x1, .., xd) = (x1, .., xn).

Consequently, in f−1(y)∩Ux we have (x1, .., xn) = y and the diffeomorphism φ−1 : Ux → V is such
that

φ−1(f−1(Y ) ∩ Ux) = ({y} × Rd−n) ∩ V.

Example of submersion We consider the function f : Rn → R defined by f(x1, .., xn) =
(x1)2 + .. + (xn)2. For r > 0, f is a submersion for all x ∈ f−1(r). Indeed, the differential dfx is
the map

dfx : h ∈ Rn 7→
∑
i

2xihi ∈ R.

This map is surjective when the xi are not all equal to zero, that is to say for f(x) 6= 0. Thanks
to Proposition 2.1.11, f−1(r) is then a submanifold of Rn, of dimension n− 1. This gives an other
proof of the fact that Sn−1 is a manifold.
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Example of immersion We consider the map f : R2 → R3 defined by f(x, y) = (x, y, x2 + y2).
The differential is

df(x,y) : h = (h1, h2) ∈ R2 7→ (h1, h2, 2xh1 + 2yh2) ∈ R3.

Therefore, we see that f is injective, proper, and an immersion on R2. Consequently, the parabola
f(R2) is a submanifold of R3, of dimension 2.

Remark 2.1.12. We can speak about immersions and submersions between manifolds, by asking
that in some charts, the application is an immersion or a submersion, and extend Proposition 2.1.11
to manifolds.

2.1.3 Tangent vectors

Tangent vectors are easy to define for a submanifold M of Rn : we say that v is tangent to M in
x if there exists a curve c :] − ε, ε[→ M such that c(0) = x and ċ(0) = v. We can define tangent
vectors in the more abstract setting following this idea.

Definition 2.1.13. Let M be a differential manifold and let x ∈M . Two C1 paths c1 :]−ε, ε[→M
and c2 :] − ε, ε[→ M such that c1(0) = c2(0) = x are equivalent if there exists a chart φ in a
neighbourhood of x such that (φ◦c1)′(0) = (φ◦c2)′(0). A tangent vector in x is an equivalence class
of path for this relation. The set of tangent vectors in x is noted TxM : it is the tangent space to
M in x.

Let f : M → N be a smooth map between manifolds. If c is a path through x ∈ M , f ◦ c is a
path through f(x) ∈ N . Moreover, if c1 and c2 are two equivalent paths, then f ◦ c1 and f ◦ c2 are
also two equivalent paths. This allow to define the differential of f in x

dfx : TxM → Tf(x)N

[c] 7→ [f ◦ c]

If (U, φ) is a chart in x, The map dφx allows to identify TxM to Rn.
We can define the tangent bundle by TM = {(x,X), x ∈ M,X ∈ TxM}. We note π the

projection π : TM →M, (x,X) 7→ x.

Proposition 2.1.14. TM is a manifold of dimension 2n

Proof. Let (Ui, φi) be a differential atlas on M . We consider the map

dφi : π−1(Ui)→ R2n,

(x,X) 7→ (φi(x), (dφi)x(X))

and check that (π−1(Ui), dφi) define a differential atlas on TM , and that the topology induced on
TM by this atlas is Haussdorff.

2.1.4 Vector bundles

TM has a very specific atlas : the charts identify π−1(U) to a product U × Rn, and on each fiber
TxM = π−1(x) we have a vectorial space structure. This enters in a more general setting
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Definition 2.1.15. A vector bundle of rank p is a triplet (E, π,B) where E and B are differential
manifolds, π : E → B is smooth and each fiber Ex = π−1(x) is a vector space with the following
condition : for all x ∈ B there exists an open neighbourhood U of x and a diffeo ψ : π−1(U)→ U×Rp
such that pU ◦ ψ = π and pRp ◦ ψ|Ey : Ey → Rp is an isomorphism.

E is called the total space, B is called the base space and ψ is called a local trivialization. If ψ1

and ψ2 are two trivializations then

ψ1 ◦ ψ−1
2 : U1 ∩ U2 × Rp → U1 ∩ U2 × Rp

(x, v) 7→ (x, u12(v))

where u12 ∈ GL(Rp).

Example : We can construct a local trivialization of TM in the following way : if (U, φ =
(x1, .., xn)) is a chart, we can consider, for all x ∈ U ,

ei = [t 7→ φ−1(φ(x) + (0, .., t, 0, ..))]

For all x, the ei are independent tangent vectors of TxM . The local trivialisation of TU we have
constructed is

ψ : π−1(U)→ U × Rn

(x,X) with X ∈ TxM 7→ (x,X1, .., Xn), with X =
∑
i

Xiei.

In this course, we will restrict to the bundles constructed from TM , called tensor bundles.

Definition 2.1.16. The cotangent bundle is T ∗M = {(x, σ), x ∈M,σ ∈ (TxM)∗}.

We can also define

L(TM, TM) = {(x,A), x ∈M,A ∈ L(TxM,TxM)},
Bil(TM) = {(x, u), x ∈M,u is a bilinear form on TxM} = L(TM, T ∗M),

L(L(TM, TM), TM)...

A handful way of defining these objects is through the tensor product that we recall here. Let U
and V be vector spaces. U ⊗ V is the vector space generated by the symbols u × v, where u ∈ U
and v ∈ V , quotiented by the subspace generated by the

u⊗ (αv + βṽ)− αu⊗ v − βu⊗ ṽ,

and

(αu+ βũ)⊗ v − αu⊗ v − βũ⊗ v.

If U is of dimension n, with basis (e1, .., en), and V is of dimension m, with basis (f1, .., fm), then
U ⊗ V is of dimension mn, with basis ei ⊗ fj , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proposition 2.1.17. The tensor product satisfy the following properties
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• If B : U × V → W is a bilinear map, then their exists a unique linear map B̃ : U ⊗ V → W
such that B = B̃ ◦ h where h : U × V → U ⊗ V is defined by

h(u, v) = u⊗ v,

• (U ⊗ V )⊗W = U ⊗ (V ⊗W ). Therefore we note simply U ⊗ V ⊗W .

• U ⊗ V ∼ V ⊗ U ,

• L(U, V ) ∼ U∗ ⊗ V ,

• (U ⊗ V )∗ ∼ U∗ ⊗ V ∗.

The proof of this proposition is left to the reader but we precise for instance what we mean by
L(U, V ) ∼ U∗ ⊗ V : their exists a natural isomorphism between the two space. In this case this is
the linear map φ : U∗ ⊗ V → L(U, V ) defined by φ(u∗ ⊗ v) = (f ∈ U 7→ u∗(f)v ∈ V ).

Definition 2.1.18. A section of a vector bundle (E, π,B) is a smooth map σ : B → E such that
π ◦ σ = id. The space of sections is denoted Γ(E). Locally, a section is a smooth map U → Rp.

For instance, if E = TM , the sections of E are called vector fields. The sections of T ∗M are
called 1-forms.

If f ∈ C∞(M,R) we can define the differential of f at x : dfx ∈ (TxM)∗. The differential of f ,
df : M → T ∗M, x 7→ T ∗xM is a section of T ∗M .

If we have a chart (U, φ), the components xi of φ in Rn are coordinates. We can see them as
functions xi : U → M . The dxi are locally sections of T ∗M which are linearly independent in all
point x ∈ T ∗U . The dxi yield a local trivialization of T ∗M .

Now that we have the local trivialization of TM , given by the ei, and the local trivialization of
T ∗M , a local trivialization of the vector bundles of tensors which are r times contravariant and s
times covariant

TM ⊗ ...⊗ TM︸ ︷︷ ︸
r times

⊗T ∗M ⊗ ..⊗ T ∗M︸ ︷︷ ︸
s times

by
ei1 ⊗ ...⊗ eir ⊗ (dxj1)⊗ ...⊗ (dxjs)

A section of this bundle can be written in this local trivialisation

T = T i1..irj1..js
ei1 ⊗ ...⊗ eir ⊗ (dxj1)⊗ ...⊗ (dxjs),

where we use the Einstein summation convention : here a sum is taken for the repeated indices (one
up and one down) : 1 ≤ i1, ..ir, j1, ..js ≤ n. Most of the time the section T will be only denoted by
T i1..irj1..js

.

2.1.5 Vector fields and derivations

In this section, we will see that the vector fields we have defined coincide with an other notion :
the derivation. In fact we could also have defined the vector field in term of derivation.

Definition 2.1.19. Let X be a vector field and f : M → R be a smooth function. The Lie derivative
of f along X, LXf = df(X) is the function M → R defined by (LXf)(x) = dfx(Xx).
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Definition 2.1.20. A derivation of C∞(M) is a R linear endomorphism D such that ∀f, g ∈
C∞(M) we have D(fg) = fDg + gDf

If (U, φ = (x1, .., xn)) is a chart, we can define a particular derivation on C∞(U) by

∂f

∂xi
=

∂

∂xi
(f ◦ φ−1(x1, .., xn))

If we write this expression at a point x we have

∂f

∂xi
(x) =

d

dt
(f ◦ φ−1(φ(x) + (0, .., t, 0, ..)))

= [f ◦ c] where c : t 7→ φ
1

(φ(x) + (0, .., xi, 0, ..))

= dfx[c] = df(ei)(x).

Consequently ∂f
∂xi = Leif . If a vector field can be written locally X = Xiei then

LXf = Xi ∂

∂xi
f,

and we can easily check that LX is a derivation. From now on, the local trivialization of TM
associated to the coordinates xi will be noted ∂

∂xi instead of ei. Note that in ∂
∂xi , the index is

down.

2.1.6 Lie derivative

Let X be a vector field. For all x we can define a cx : I → M , such that ċx(t) = Xcx(t) and
cx(0) = x. From this we can define the flow φt of a vector field X by φt(x) = cx(t). This flow may
not be defined for all x and all t, but at least, in each compact set K of M , for t small enough, the
flow φt : K →M exists. By definition, we have Xx = [cx(t)] and consequently

LXf =
d

dt
(f ◦ φt(x))|t=0.

This give us a way to derive more general tensors. For this we will define the pull back of a vector
field.

Definition 2.1.21. Let φ : U → V be a diffeomorphism between two open set of M .

• The pull back of a one form ω ∈ Tφ(p)V is (φ∗ω)p = ωφ(p) ◦ dφ.

• The pull back of a vector field X ∈ Tφ(p)V is (φ∗X)p = dφ−1Xφ(p).

This allows to define the Lie derivative of a vector field.

Definition 2.1.22. The Lie derivative of a vector field Y along a vector field X is defined by

LXY = (
d

dt
φ∗tY )|t=0.

There exists a more algebraic definition of LXY : the Lie bracket .
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Definition 2.1.23. Let X,Y be two vector fields. The Lie bracket [X,Y ] is the operation corre-
sponding to the commutator [LX ,LY ] = LX ◦ LY − LY ◦ LX

In a chart we have

[X,Y ] =

(
Xi ∂Y

j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj
.

This prove that [X,Y ] is a vector field.

Proposition 2.1.24. We have LXY = [X,Y ]

Proof. Let φt be the flow associated to X and ψu the flow associated to Y . Using the chain rule
for derivation of composed map, we compute

d

du
(φ−t ◦ ψu ◦ φt(x)) = (dφ−t)φ−t◦ψu◦φt(x)

(
d

du
(ψu(φt(x)))

)
= (dφ−t)φ−t◦ψu◦φt(x)

(
Yψu◦φt(x)

)
.

Evaluating in u = 0 we obtain

d

du
(φ−t ◦ ψu ◦ φt(x))

∣∣
u=0

= φ∗tY

and therefore
d

dt

(
d

du
(φ−t ◦ ψu ◦ φt(x))

∣∣
u=0

) ∣∣
t=0

= LXY.

Consequently, applying this vector field to a function f we obtain

(LXY ) (f) = dfx(LXY )

= dfx

(
d

dt

d

du
(φ−t ◦ ψu ◦ φt(x))

)
=

d

dt
dfx

(
d

du
(φ−t ◦ ψu ◦ φt(x))

)
=

d

dt

d

du
f(φ−t ◦ ψu ◦ φt(x))

=
d

du
(−(LXf)(ψu) + LX(f ◦ ψu))

= −LY LXf + LXLY f

The Lie derivative can be extended on tensor fields by compatibility : in all these definitions,
we take a vector field X

• If ω is a one form, the Lie derivative of ω in the direction X is defined such that for all vector
field Y

(LXω)(y) = LX(ω(Y ))− ω(LXY )

• If u ∈ Bil(TM), the Lie derivative of u is defined such that for all vector fields Y,Z

(LXu)(Y, Z) = LX(u(Y,Z))− u(LXY,Z)− u(Y,LXZ).
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• If A ∈ L(TM, TM), the Lie derivative of A in the direction X is defined such that for all
vector field Y

(LXA)(Y ) = LX(A(Y ))−A(LXY ).

Exercise 1.
One can check that LXω = d

dt (φ
∗
tω)|t=0.

The Lie derivative is indeed a derivative, in the sense that it is R linear, and satisfies the Leibnitz
rule

LX(fY ) = fLXY + (X(f))Y.

However, there is something unsatisfactory about it which is that the value of LXY at a point p
does not depend only on the value of X at p, but also on the behaviour of X near p. This motivate
the definitions of the next section.

2.1.7 Connexions

Definition 2.1.25. A connection D on the vector bundle (E,M) is an application D : TM×E → E
such that

• For all f ∈ C∞(M) and X,Y ∈ Γ(TM), Z ∈ Γ(E), DfX+Y = fDXZ +DY Z,

• For all λ ∈ R, X ∈ Γ(TM), Z,W ∈ Γ(E), DX(λZ +W ) = λDXZ +DXW ,

• For all f ∈ C∞(M) and X ∈ Γ(TM), Z ∈ Γ(E), DX(fZ) = fDXZ + (LXf)Z.

If (x1, .., xn) is a coordinate chart on M , and (e1, .., ep) a local trivialization on E we can write

D ∂

∂xi
ea = Γbiaeb.

The Γbia are called the Christoffel symbols of the connection. If σ ∈ Γ(E) and σ =
∑
σaea then

D ∂

∂xi
σ =

∂σa

∂xi
ea + σaΓbiaeb.

Exemple on a trivial bundle If M × Rp is a trivial bundle, and σ ∈ Γ(E), we can write
σ = (σ1, .., σp). Then

DXσ = (LX(σ1), ..,LX(σp))

defines a ”trivial” connection on M × Rp. The Christoffel symbols in this trivialization are zero.
Be careful ! It is not because the Christoffel symbols are zero in some basis that they are zero

in every basis ! For instance if we consider the trivial connection on R2 defined, in Euclidean

coordinates (x1, x2) by D ∂

∂xi
(Xj ∂

∂xj ) = ∂Xj

∂xi
∂
∂xj then the Christoffel symbols in the basis ∂

∂xj are

zero, but in a local basis defined by er = ∂
∂r , eθ = 1

r
∂
∂θ where r, θ are the polar coordinates, we

have for instance

D ∂

∂xi
eθ = D ∂

∂xi

(
− sin(θ)(θ)

∂

∂x1
+ cos(θ)

∂

∂x2

)
= −∂ sin(θ)

∂xi
∂

∂x1
+
∂ cos(θ)

∂x2

∂

∂xi

and consequently

Deθeθ = − ∂

∂r
.
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2.2 Riemannian manifolds

2.2.1 Riemannian metric

If E is a vector space, we note Sym2E the vector space of symmetric bilinear forms on E. We
introduce the tensor bundle Sym2M = {(x, q) ∈M × Sym2(Rn), x ∈M, q ∈ Sym2(TxM)}.

Definition 2.2.1. A metric on a differential manifold M is a section of Γ(Sym2M) which is
positive definite on all point. In other word, it is the smooth data of a scalar product on each fibre
TxM . A differential manifold M equipped with a metric g is called a Riemannian manifold.

In a coordinate chart xi we can write g = gijdx
idxj . This means that if X = Xi ∂

∂xi and

Y = Y j ∂
∂xj we have g(X,Y ) = gijX

iXj .

Example The metric on the sphere S2 in the spherical coordinates θ, φ is given by

g = dθ2 + sin2(θ)dφ2.

The prescription of a metric g allows to identify the tangent space and the cotangent space in
the following sense : if X is a vector field, we can define a unique one-form ωX ∈ Γ(T ∗M) by
requiring that for all Y ∈ Γ(TM) we have ωX(Y ) = g(X,Y ). In a coordinate chart xi we can write
ωX = (ωX)jdx

j with (ωX)j = gijX
j . We will often denote a vector field X = Xi ∂

∂xi by Xi, and a
one form ω = ωjdx

j by ωj : the index up or down then indicate whether we speak about a vector
field or a one form. The metric allows to raise and lower indices to make an identification. For
instance we will write (ωX)j = gijX

j = Xj .
The metric g induced also a metric on g−1 on T ∗M , such that for all X,Y ∈ Γ(TM),

g(X,Y ) = g−1(ωX , ωY ),

which in coordinates can be written gijX
iY j = gijXiYj .

2.2.2 The Levi-Civita connexion

Proposition 2.2.2. There exists a unique connection ∇ on TM such that

• For all vector fields X,Y we have ∇XY −∇YX = [X,Y ] : we say that ∇ is torsion free.

• ∇g = 0, which means that for all vector fields X,Y, Z we have

LXg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) :

we say that ∇ is metric.

This connection ∇ is called the Levi-Civitta connexion.

Proof. Unicity: By the property that ∇ is metric we have

LXg(Y,Z) = g(∇XY,Z) + (Y,∇XZ)

LY g(X,Z) = g(∇YX,Z) + (X,∇Y Z)

LZg(X,Y ) = g(∇ZX,Y ) + (X,∇ZY )
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Consequently

LXg(Y, Z) + LY g(X,Z)− LZg(X,Y ) = g([X,Z], Y ) + g(X, [Y,Z]) + g([Y,X], Z) + 2g(∇XY, Z)

and therefore

g(∇XY,Z) =
1

2
(LXg(Y, Z) + LY g(X,Z)− LZg(X,Y )− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ])) .

This formula, called the Koszul formula express g(∇XY, Z) independently on the connection ∇.
Existence: The Koszul formula gives a formula for g(∇XY, Z). Then it remains to check that

this define a connection which is metric and torsion free. This is left to the reader.

Exercise 2.
By using the Koszul formula, you can express the Christoffel symbols of the Levi-Civita con-

nection in a coordinate chart (xi).

Γijk =
1

2
gil(∂jglk + ∂kglj − ∂lgjk).

The Levi-Civita connection can be extended to derive all types of tensor fields by compatibility
: in all these definitions, we take a vector field X

• If ω is a one form, ∇Xω is such that for all vector field Y

(∇Xω)(y) = LX(ω(Y ))− ω(∇XY ).

• If u ∈ Bil(TM) ∇Xu is such that for all vector fields Y,Z

(∇Xu)(Y,Z) = LX(u(Y, Z))− u(∇XY,Z)− u(Y,∇XZ).

• If A ∈ L(TM, TM), ∇XA is such that for all vector field Y

(∇XA)(Y ) = ∇X(A(Y ))−A(∇XY ).

In particular, we can apply the Levi-Civita connection to the metric g, which is a section of
Bil(TM). The condition that ∇ is metric means that for all X ∈ Γ(TM) we have ∇Xg = 0.

Exercise 3.
In a coordinate system, we can write ∇ ∂

∂xi
ω = (∇ ∂

∂xi
ω)jdx

j with

(∇ ∂

∂xi
ω)j =

∂ωj
∂xi
− Γlijωl.

and ∇ ∂

∂xi
A = (∇ ∂

∂xi
A)lj

∂
∂xl

dxj with

(∇ ∂

∂xi
A)lj =

∂Alj
∂xi

+ ΓlikA
k
j − ΓkijA

l
k.

We will often use a slightly confusing notation and write, for Y a vector field (∇ ∂

∂xi
Y )j = ∇iY j ,

or for σ a one form (∇ ∂

∂xi
σ)j = ∇iσj .
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2.2.3 Geodesics

In Rn, the straight lines are parametrized curves with a zero acceleration. In (M, g), the acceleration
of a path c : I →M is the derivative of the speed ċ in the direction of the speed ċ, in other words
∇ċċ. Note that their may be some ambiguity because ċ is only defined on the path c(t) : we have
ċ(t) ∈ Tc(t)M . Therefore ċ is not a vector field. However, if X ∈ Γ(M) we can define (∇ċX)c(t),
since the connection have been introduced precisely for this to depend only on the value of ċ on
c(t). In coordinates, we have

(∇ċXj)c(t) = (ċi∂iX
j)(c(t)) + ΓjikX

k(c(t))ċi =
d

dt
(Xj(c(t))) + ΓjikX

k(c(t))ċi.

We see that in addition, this quantity depends only on the value of X on c(t). Therefore ∇ċċ is
well defined.

Definition 2.2.3. A geodesic is a path c : I → M such that ∇ċċ = 0, where ∇ is the Levi-Civita
connection. More generally, we will say that a vector field X is geodesic if ∇XX = 0.

In coordinates, if we write c(t) = (x1(t), .., x2(t)) then the geodesic equation is

ẍi + Γijkẋ
j ẋk = 0.

This is a second order non linear equation. : given p0 ∈ M and an initial speed v0 ∈ TxM there
exists a unique geodesic, defined on a maximal interval I ⊂ R such that c(0) = p0 and ċ(0) = v0.

2.2.4 Curvature

The curvature tensor is an object which measures the defect of commutation of connexions. It can
be defined for any connexion, but let us focus on the case of the Levi-Civita Connection.

Definition 2.2.4. Let (M, g) be a Riemannian metric. Let ∇ be the Levi-Civita connexion. Riem
is the section of the tensor bundle of anti-symmetric bilinear maps from TM to End(TM) defined
for all X,Y, Z ∈ Γ(TM) by

Riem(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

This definition is in fact also a proposition because it is not clear a priori that Riem defined
above is indeed a tensor. For this we have to check that Riem is C∞ linear with respect to X,Y
and Z. Let us check the C∞ linearity with respect to X :

Riem(fX, Y )Z =f∇X∇Y Z −∇Y (f∇XZ)−∇f [X,Y ]−Y (f)XZ

=f∇X∇Y Z − f∇Y (∇XZ)− Y (f)∇XZ − f∇[X,Y ]−Z + Y (f)∇XZ
=fRiem(X,Y )Z

Exercise 4.
In a coordinate system, we can write Riem( ∂

∂xγ ,
∂
∂xµ ) ∂

∂xβ
= Rαβγµ

∂
∂xα , with

Rαβγµ =
∂

∂xγ
Γαµβ −

∂

∂xµ
Γαγβ + ΓαγνΓνµβ − ΓαµνΓνγβ .
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Proposition 2.2.5. The Riemann tensor satisfies the following properties :

• Riem(X,Y ) = −Riem(Y,X)

• g(Riem(X,Y )Z, T ) = −g(Riem(X,Y )T,Z)

• Riem(X,Y )Z + Riem(Y, Z)X + Riem(Z,X)Y = 0 : this property is called Bianchi’s first
identity.

• g(Riem(X,Y )Z, T ) = g(Riem(Z, T )X,Y )

• (DZR)(X,Y )W + (DXR)(Y,Z)W + (DYR)(Z,X)W = 0 : this property is called Bianchi’s
second identity.

Remark 2.2.6. These properties ensure that if M is 2−dimensional, the curvature is determined
by a number in each point x : g(R(e1, e2)e2, e1) where (e1, e2) is an orthonormal basis of TxM .
This number is called Gauss curvature.

Theorem 2.2.7. Riemann, 1854 Let (M, g) be a Riemannian manifold. Then Riem = 0 if and
only if (M, g) is locally isometric to (Rn, δ) where δ is the Euclidean metric (this means that in the
neighbourhood of every points, there exists coordinates x1, .., xn such that g =

∑
(dxi)2.

Geodesic deviation Their is a geometric interpretation of the Riemann curvature tensor. Let
γs(t) be a one parameter family of geodesics, such that (s, t) 7→ γs(t) define a submanifold Σ of
M . The vector field T = ∂

∂t is tangent to the geodesics. Up to a reparametrization of t, we can

assume ∇TT = 0. We note X = ∂
∂s the infinitesimal displacement from a geodesic to the other.

Then v = ∇TX is the speed of the displacement, and a = ∇T v its acceleration. Since s and t are
coordinates, we have [X,T ] = 0, and we can compute

a = ∇T∇TX = ∇T∇XT = Riem(T,X)T +∇X∇TT = Riem(T,X)T.

Definition 2.2.8. The Ricci tensor is the element of Γ(Sym2(TM)) defined by

Ric(X,Y ) = Tr(Z 7→ Riem(Z,X)Y ).

In a coordinate chart
Rµν = Rαµαν .

We can contract one time more and define the scalr curvature, which is the function R is defined
by R = gijRij.

2.2.5 Second fundamental form

Let Σ be a submanifold of M of dimension n− 1, oriented by a unit normal vector N . The metric
g on M induce a metric ḡ on Σ : two vectors X,Y ∈ TxΣ can be seen as vectors on TxM and one
can define ḡ(X,Y ) = g(X,Y ). This induced metric induces a connection ∇̄ on Σ. We define the
second fundamental form K ∈ Γ(Sym2(TΣ)) by : for all X,Y vector fields in Γ(TΣ)

∇XY = ∇̄XY + II(X,Y )N.

In other words
II(X,Y ) = g(∇XY,N).

One has to check that K is indeed a tensor, and is symmetric (exercise).
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Proposition 2.2.9. The second fundamental form is also given by II = − 1
2LNg : for all X,Y

tangent to Σ we have

II(X,Y ) = −1

2
(LNg)(X,Y ).

Proof. We start with a general computation : for all vector fields X,Y, Z we have

(LXg)(Y,Z) =LX(g(Y, Z))− g(LXY,Z)− g(Y,LXZ)

=LX(g(Y, Z))− g(∇XY −∇YX,Z)− g(Y,∇XZ −∇ZX)

=g(∇YX,Z) + g(Y,∇ZX)

where in the first equality, we have used the definition of the Lie derivative of a 2-tensor, in the
second equality we have used that the Levi-Civita connection is torsion free, and in the last equality
we have used the fact that the Levi-Civita connection is metric, that is to say ∇g = 0. Now, if we
use the definition of the second fundamental form, we write, for X,Y vector fields tangent to Σ

II(X,Y ) =g(∇XY,N)

=
1

2
g(∇XY +∇YX,N) +

1

2
g([X,Y ], N)

=
1

2
(LX(g(Y,N))− g(Y,∇XN)− LY (g(X,N))− g(X,∇YN))

=− 1

2
(LNg)(X,Y ),

where we have used that [X,Y ] is tangent to Σ and therefore g([X,Y ], N) = g(X,N) = g(Y,N) =
0.

2.2.6 Symmetries

Definition 2.2.10. Let φ : U ⊂ M → V ⊂ M be a differomorphism. The pull-back of a 2-form u
in Tφ(p)M is the 2-form in TpM defined by

(φ∗u)p(X,Y ) = uφ(p)(dφX, dφY ).

Definition 2.2.11. A diffeomorphism φ : U ⊂M →M is an isometry if

φ∗g = g.

A vector field whose one parameter flow is a flow of isometries is called a Killing field.

Proposition 2.2.12. K is a Killing field on (M, g) if and only if

LKg = 0.

Proof. Let φt be the one parameter flow generated by K.

(φ∗t g)(X,Y )|p = g(dφtX, dφtY )|φt(p) = g(φ∗−tX,φ
∗
−tY )|φt(p),

Consequently, by definition of the Lie derivative we have

d

dt
[(φ∗t g)(X,Y )|p)]t=0 = K(g(X,Y ))− g(LKX,Y )− g(X,LKY ) = (LKg)(X,Y ).
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Consequently, if K is a Killing field, which means that for all t, φt is an isometry then (φ∗t g)(X,Y ) =
g(X,Y ) and we have (LKg)(X,Y ) = 0.

Conversely, if LKg = 0, using the fact that φt+t′ = φt ◦ φt′ we have

d

dt
[(φ∗t g)(X,Y )] = 0,

so (φ∗t g)(X,Y ) = (φ∗0g)(X,Y ) = g(X,Y ) and φt is an isometry for all t.

Exercise 5.
Let X be a vector field. Show that LXg = (X)π where (X)π, the deformation tensor of X is

defined by
(X)παβ = DαXβ +DβXα.

A vector field K is Killing if and only if (X)π = 0. This is something non generic for a space-time

to have Killing fields. Indeed, (X)π = 0 is a system of n(n+1)
2 equations with n unknowns.

2.2.7 Integration

Let (M, g) be a Riemannian manifold of dimension n. In a coordinate system, one can define det(g)
as the determinant of the matrice gαβ . This does not define a function on the manifold M since
this is a coordinate dependant quantity. However, we have the following property :

Lemma 2.2.13. Let (U , (x1, .., xn)) be a chart on M, and f :M→ R a scalar function. Then∫
U
f
√
det(g)dx1..dxn

is invariant by change of coordinates.

Proof. Let yi(x1, .., xn) be a change of coordinate. Doing a change of variable in the integral, we
obtain ∫

U
f
√
det(g)dx1..dxn =

∫
U
f
√
det(g)

∣∣∣∣∂x∂y
∣∣∣∣ dy1..dyn,

where
∣∣∣∂x∂y ∣∣∣ is the Jacobian, that is to say the determinant of the matrix of the change of coordinates.

If we note det(g̃) the determinant of the matrix g̃αβ of the metric coefficients in the basis dyαdyβ ,
we have

det(g̃) =

∣∣∣∣∂x∂y
∣∣∣∣2 det(g).

This concludes the proof of the lemma.

We can now define the integration on M with the use of a partition of unity ψα adapted to a
covering by coordinate charts Uα.∫

M
fdvolg =

∑
α

∫
Uα
ψαf

√
det(g)dx1..dxn.

Exercise 6.
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We have, in a coordinate chart∫
U

(DαXα)dvolg =

∫
∂αX

αdx.

2.3 Exercises

Exercise 7.

1. Let us consider the chart on S2 given by (Ui, φi), with i = 1..6 where for 1 ≤ i ≤ 3,
Ui = {x ∈ S2, xi > 0}, Ui+3 = {x ∈ S2, xi < 0} and

φ1(x) = φ4(x) = (x2, x3), φ2(x) = φ5(x) = (x1, x3), φ3(x) = φ6(x) = (x1, x2).

Check on a few changes of charts that this atlas is equivalent to the stereographic projection.

2. Can you build yet another atlas on S2 ?

Exercise 8.

1. Is the subset of R3 defined by x2 + y2 − z2 = 0 a submanifold of R3 ?

2. Is the map R→ R2, t 7→ (t2, t3) an immersion ? Show that its image is not a submanifold of
R2.

3. Show that the map ]−∞, 1[→ R2 defined by t 7→
(
t2−1
t2+1 ,

t(t2−1)
t2+1

)
is an injective immersion,

but that its image is not a submanifold of R2. Draw the image.

4. Show that the group SL(n,R) is a submanifold of the vector space of matrices n× n. What
is its dimension ? Same question with O(n).

Exercise 9.
Let U be an open set of Rn, a ∈ U and f : U → Rp. If f is a submersion, show that the tangent

space to f−1(f(a)) in a is the kernel of dfa. If f is an immersion, show that the tangent space to
f(U) in f(a) is the image of dfa.

Exercise 10.
We say that two metrics g and g′ on M are conformal if there exists a function f ∈ C∞(M)

such that g′ = efg. Let D and D′ be respectively the Levi-Civita connection associated to g and
g′. Show that

2D′XY = 2DXY +X(f)Y + Y (f)X − g(X,Y )gradg(f)

where gradg(f) is the unique vector field such that for all X ∈ Γ(TM), X(f) = g(gradg(f), X).

Exercise 11.
Let D be a connexion on a vector bundle E with basis M . Let c : I →M be a smooth curve.

1. Show that (Dċs)c(t) depends only on s on the curve c.
Given a curve c, we define the parallel transport P c : Ec(a) → Ec(b), s(a) 7→ s(b) where s(t) is

the solution to Dċs = 0.
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2. Show that DXσ = d
dt (σ̃(t)) where we took any curve c with c(0) = x and ċ(0) = Xx and

define σ̃(t) = (P c)−1(σ(c(t))).

3. We now consider the Levi-Civitta connexion ∇. Let Xx, Yx ∈ TxM be such that gx(Xx, Yx) =
0. Let c be a path from x to y. Show that

g(P cX,P cY ) = 0.

Exercise 12.
Let M be an hypersurface of R3 (a submanifold of dimension 2). We consider R3 with the

Euclidean metric. Let D the flat connection on R3 and ∇ the induced connection on the sphere.

1. Let X,Y ∈ TM . Show that (DXY )p − (∇XY )p is colinear to the normal to M at p.

2. Show that γ(s) is a geodesic on M if and only if γ̈ is colinear to the normal.

3. Characterise the geodesics on the sphere.

Exercise 13.
Let (M, g) be a Riemannian manifold, and γ be a geodesic. Suppose that their exists a Killing

field K. Show that g(γ̇,K) is constant along γ.

Exercise 14.
Let (M, g) be a Riemannian manifold, and D the Levi-Civita connection associated to g.

1. Show that (LKg)αβ = DαKβ +DβKα.

2. Assume that K be a Killing field. Show that

DXDYK = −Riem(K,X)Y.

Exercise 15.
Let (M, g) be a Riemannian manifold, and H ⊂ M an hypersurface , with the induced metric.

Let II be the second fundamental form. Let R be the Riemannian curvature tensor on M and R
the Riemannian curvature tensor on H.

1. Show the Gauss theorem

Rijlm = Rijlm − IImjIIli + IIljIImi.

Write the corresponding relation for the Ricci tensor and the scalar curvature.

2. Calculate the second fundamental form of the embedding of Sn in (Rn+1, δ). Deduce the
Riemann curvature, the Ricci curvature and the scalar curvature of the sphere.
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Chapter 3

Lorentzian geometry and general
relativity

3.1 The geometry of space-time in special relativity

In Newton mechanics, space-time is a direct product Rt×R3, where Rt is the set of times, and the
space is R3 equipped with the Euclidean metric δ = (dx1)2 + (dx2)2 + (dx3)2. The events at t = cst
are simultaneous. The future of a point p = (0, x) is t > 0 and the past t < 0. Newton’s laws are
invariant under

• The symmetries of the Euclidean space : translations and rotations,

• The time translations,

• The Galileo transform (xi)′ = xi + vit.

In particular, the speed can not be an absolute value, it depends on the choice of inertial frame.
This leads to contradiction with the fact that the speed of light is a physical constant. This is
indeed a prediction of Maxwell equations, which unify the laws governing the electric field E and
the magnetic field B (written here with ”units” such that ε0 = µ0 = 1)

∇∧ E = −∂B
∂t
,

∇∧B = j +
∂E

∂t
,

∇.E = ρ,

∇.B = 0.

Maxwell’s laws are not left invariant by the Galileo transform. Instead they are invariant by
the following transformations

• The translations in space or time,

• The space rotations,

25
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• The hyperbolic rotations

Li : t → cosh(α)t+ sinh(α)xi

xi → sinh(α)t+ cosh(α)xi
.

These transformations generate a group, discovered by Poincaré and Lorentz, which is also the
group which leaves invariant the quadratic form

m = −dt2 + (dx1)2 + (dx2)2 + (dx3)2. (3.1.1)

The quadratic form m is called Minkowski metric. It is of signature (−1, 1, 1, 1). In special relativity,
the laws of physics are independent of the choice of inertial coordinates, which are the coordinates
in which m can be written like (3.1.1). For instance, if (t, xi) are inertial coordinates, so are
(t′, (x1)′, x2, x3) where t′, (x1)′ are obtained through an hyperbolic rotation of parameter α. In
particular, the time coordinate t is not an absolute quantity any more !

When R4 is equipped with the quadratic form m, one can make a distinction between vectors
in R4 in the following way.

• X is timelike if m(X,X) < 0

• X is light-like if m(X,X) = 0

• X is space-like if m(X,X) > 0.

An observer corresponds to a curve in space-time which is causal, meaning that its tangent vector
is always time-like or light-like. Let p be a point of space-time. We can consider all the points
which can be joined with a causal curve. It has two components : one is the future of p, and the
other the past of p.

We can define the proper time of an observer γ : [a, b]→ R4 between γ(a) and γ(b) by∫ b

a

√
−m(γ̇(s), γ̇(s))ds.

3.1.1 The Poincaré group

Minkowski metric admits the following symmetries :

• The translations x 7→ x+ a for a ∈ R1+3,

• The transformations x 7→ Ax, where A is a 4× 4 matrix such that m(Ax,Ay) = (x, y) : these
transformations are called Lorentz transforms. One can make a distinction between space
rotations and hyperbolic rotations.

The group generated by these isometries is called the Poincaré group. These isometries correspond
to Killing fields which can be written in inertial coordinates (x0, x1, x2, x3), with x0 = t in the
following way

• for the generators of translations : ∂
∂xα ,

• for the generators of space rotations : xi ∂
∂xj − x

j ∂
∂xi , 1 ≤ i < j ≤ 3,

• for the generators of hyperbolic rotations : x0 ∂
∂xi + xi ∂

∂x0 , 1 ≤ i ≤ 3.
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3.1.2 Maxwell equations

Their is a covariant way of expressing Maxwell equations. In inertial coordinates (t, x1, x2, x3), we
write

F =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


F can be seen as a 2 form which is antisymmetric. Maxwell equations can be written

DαFβγ +DγFαβ +DβFγα = 0,

DαFαβ = Jβ ,

where Jβ is the source term.

3.2 The geometry of space-time in General Relativity

Once the theory of special relativity had been constructed, the next task had been to reformulate
physicals law in this setting. However, writing Newton’s law of universal gravitation in the context
of special relativity was a special challenge. Indeed, it invokes a concept of ”action at a distance”,
incompatible with the causality notions of special relativity. One of the principle which lead to
Geneneal relativity is the equivalence principle, according to which all bodies are influenced in
the same way by the gravitational field. The path of freely falling bodies define a preferred set
of curves in space-time, just as in special relativity did the paths of inertial bodies. This paths
are the geodesics of the space-time. In general relativity, the gravitational field corresponds to a
deviation of the space-time geometry from the flat geometry of special relativity. More precisely,
the space-time of General Relativity is described by a Lorentzian manifold (M, g) that we introduce
now.

3.2.1 Lorentzian manifolds

Definition 3.2.1. A Lorentzian metric on a manifold M is a section of Sym2M which is every-
where non degenerate and of signature (−1, 1, 1, 1).

A Lorentzian manifold is a manifold M equipped with a Lorentzian metric g. All the notions
of Section 2.2 can be defined in the context of Lorentzian manifolds : connections, geodesics, cur-
vature... Moreover, with a Lorentzian metric comes a new notion which is causality.

A vector v ∈ TxM is called :

• spacelike if gx(v, v) > 0,

• null or light-like if gx(v, v) = 0,

• timelike if gx(v, v) > 0,

• causal if gx(v, v) ≥ 0.
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The set of causal vectors in TxM is called the causal cone, noted Cx, and its boundary, the set of
null vectors is called the light cone.

One can separate the causal cone Cx \ {0} into two connected components C+
x and C−x . If it is

possible to make a continuous choice of C+
x and C−x with respect to x ∈ M , we will say that the

manifold is time oriented.

Let γ : [a, b]→M be a parametrized curve. It is

• light-like or null if for all s ∈ [a, b], γ̇(s) is null (future null if in addition, for all s, γ̇(s) ∈ C+
x ),

• timelike if for all s ∈ [a, b], γ̇(s) is timelike (future timelike if in addition, for all s, γ̇(s) ∈ C+
x ),

• causal if for all s ∈ [a, b], γ̇(s) is causal (future causal if in addition, for all s, γ̇(s) ∈ C+
x ).

An hypersurface Σ of M is called space-like if all its tangent vectors are space-like. The restric-
tion of the metric g to Σ is then a Riemannian metric.

3.2.2 Einstein equations

In Newton’s theory, the gravitational field is the gradient of the Newtonian potential U , and the
motion of a test particle in the gravitational field obeys a differential equation, independent on its
mass ẍi = ∂U

∂xi . Moreover, the potential U satisfies the Poisson equation ∆U = −4πκρ, where ρ is
the mass density of the source and κ is the Newtonian gravitational constant. If we compare the
equation of motion with the geodesic equation

ẍi + Γijkẋ
j ẋk = 0,

we see that the ”equivalent” of the gravitational potential in general relativity should be the metric
itself. Einstein equations link the metric g to the source. They can be written

Rµν −
1

2
Rgµν + Λgµν = Tµν ,

where Rµν is the Ricci tensor of g, R is the scalar curvature, Λ the cosmological constant, and Tµν
the stress-energy tensor. Let us make some comments on these equations

• These equations obey the principle of general covariance : the physical phenomena do not
depend on the reference frame in which we express their laws.

• Like Newton’s equations, these equations are second order in g.

• One often says that the space-time is curved in the presence of matter. The first object we
have introduced in the course to describe the curvature is the Riemann tensor. However one
could not ask that in the absence of source, Riem = 0 because the effects of gravitation can
be felt far from the sources !

• The stress-energy tensor was already an object introduced in special relativity to describe
matter distributions. If an observer is described by a four velocity vα, then Tαβv

αvβ is the
energy mesured by the observer. From the other components of Tαβ , one can compute the
linear momentum, the stress...
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Proposition 3.2.2. Let (M, g) be a Riemannian or Lorentzian manifold. We have

Dµ(Rµν −
1

2
Rgµν) = 0.

These identities are called the contracted Bianchi identities.

This proposition implies that Einstein equations yield the following identities for T

DµTµν = 0.

These identities are called local conservation laws.

3.2.3 Examples of Energy impulsion tensors

The form of the energy impulsion depend on the matter model under study. Let us give two
examples.

• If the matter is described by a perfect fluid, with 4 velocity u, density of energy ρ, and pressure
P

Tµν = ρuµuν + P (gµν + uµuν).

The local conservation laws DµTµν = 0 yield Euler’s equations.

• If there is an electromagnetic field, given by an antisymmetric 2 form F then

Tµν = FµαFν
α − 1

4
gµνFαβF

αβ .

When there are no sources for Maxwell equations, DµTµν = 0 yields Maxwell equations. If
there are sources, one should add the energy impulsion tensor of a charged fluid for instance.

3.2.4 Some explicit solutions

We consider first the vacuum case, that is to say Tµν = 0, with zero cosmological constant. In
that case, by taking the trace with respect to the metric g of Einstein equations, one obtain (in
dimension 3 + 1)

gµν
(
Rµν −

1

2
Rgµν

)
= R− 2R = 0,

so the scalar curvature, and consequently the Ricci tensor vanishes. A very special solution is
Minkowski metric, the metric of Special Relativity. The Riemann tensor of Minkowski metric
vanishes and so does a fortiori the Ricci tensor. However, as was said before, their are solutions
to Einstein vacuum equations for which the Riemann tensor is not zero. The first one which was
discovered in this category was Schwartzschild solution, whose aim was to describe the gravitation
created by a static spherically symmetric star. There is a simple expression for this metric, which
is

gS = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2).

We note that the vector fields ∂
∂t and ∂

∂φ are Killing fields for the metric.
If we consider the exterior of a star of radius r0 > 2M , the metric gS is well defined. Let us now

consider the manifold M = R×]2M,+∞[×S2 equipped with the metric gS . It turns out that M
can be isometrically embedded in a larger Lorentzian manifold (N , g̃), for which the region r = 2M
is not singular anymore. This means that r = 2M is only a coordinate singularity.
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Figure 3.1: The maximal extension of the Schwarzschild space-time : in this figure, each point is a
2−sphere of radius r.

3.2.5 Toward the study of general solutions

In the following of the course, we want to initiate a study of general solutions to Einstein equations
in vacuum. To do this, we will see Einstein equations as evolution partial differential equations.
To this extent, we introduce a 3 + 1 decomposition of space-time. We assume that the manifold M
can be decomposed in Σ×R, where Σ is a three dimensional manifold. We introduce the splitting
of the metric

g = −N2dt2 + ḡij(dx
i + βidt)(dxj + βjdt),

then ḡij is the Riemanian metric induced on the hypersurface of constant t. N is called the lapse,
and β the shift. Let T be the vector field of normals to Σ. We have

T =
1

N
(∂t − β) =

1

N
e0.

We also introduced the second fundamental form K.

Kij = − <∇eiT, ej>= − 1

2N
(∂tgij − Lβgij).

The Ricci tensor can be expressed in term of N, β, ḡ and K :

Proposition 3.2.3. Decomposition of the Ricci tensor associated to g:

Rij = R̄ij +KijKl
l − 2Ki

lKjl −N−1(Le0Kij +∇i∂jN), (3.2.1)

R0j = N(∂jK
h
h −∇ḡKh

j), (3.2.2)

R00 = N(∂0(Kh
h)−NKijK

ij + ∆N), (3.2.3)

Scalar curvature

R = R̄+ (ḡijKij)
2 +KijKij − 2N−1∂0(Kh

h)− 2N−1∆N. (3.2.4)
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Proof. We give only the proof of the first equality. We begin by proving the Theorem Egregium of
Gauss

Rijkl =<∇i∇jel −∇j∇iel, ek>
=<∇i(∇jel −KljT )−∇j(∇iel −KilT ), ek>

= R̄ijkl −Klj <∇iT, ek> +Kil <∇jT, ek>
= R̄ijkl +KljKik −KilKjk.

and consequently

Rij = gµνRµiνj

= glk(R̄likj +KijKlk −KikKlj) + g00N(Le0Kij +NKi
lKlj +∇i∂jN)

= R̄ij +KijKl
l −Ki

lKjl −N−1(Le0Kij +NKi
lKlj +∇i∂jN).

We look at the time derivatives in the system: they appear with K, and with Le0K. This lead
to the following choice of initial data:

Initial data

The initial data for Einstein equation are a triplet (Σ, ḡ,K) with

• Σ a 3-dimensional manifold

• ḡ a Riemannian metric on Z

• K a symmetric 2-tensor

Solving Einstein equations with these data consist in finding (M, g) such that

Σ ⊂M, g|Σ = ḡ,

and K is the second fundamental form of the embedding of Σ in M.

Evolution equations

There is a gauge freedom in Einstein equations, corresponding to the invariance by diffeomorphism.
A natural gauge choice consist in fixing β and N . For example β = 0, N = 1. An other choice,
which is often used are wave coordinates, which will be seen more in detail in the end of the course,
but which we already present here to motivate our study of wave equations.

We write the Ricci tensor in a coordinate system

Rνν = −1

2
�ggµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) + Pµν(g)(∂g, ∂g),

where Hρ = �gxρ = 1√
|det(g)|

∂α(gαρ
√
|det(g)|), and �g is defined by

�gu = ∇α∇αu =
1√
|det(g)

∂α(
√
|det(g)gαβ∂βu). (3.2.5)
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In Minkowski metric, the operator �g is the d’Alembertian

�gu = −dt2 + (dx1)2 + (dx2)2 + (dx3)2.

Wave coordinates consist in setting Hρ = 0. They can be seen as the equivalent of Lorenz gauge
for Maxwell. In wave coordinates we have

Rµν = RHµν = −1

2
�ggµν + Pµν(g)(∂g, ∂g),

so Eintein equations can be written as a system of non linear wave equations.

3.3 Exercises

Exercise 1.

1. Let E,B be the electric and magnetic field, solution of the Maxwell equations in vacuum.
Let us introduce the 2 tensor on Minkowski space-time

F =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


Show that Maxwell equations for E and B are equivalent to the equations for Fαβ :

DαFβγ +DγFαβ +DβFγα = 0, (3.3.1)

DαFαβ = 0. (3.3.2)

2. In a curved space-time (M, g), the Maxwell field is given by a (0, 2) tensor Fαβ and Maxwell
equations are (3.3.1) and (3.3.2) with D the Levi-Civita connection associated to g. The stress
energy tensor is given by

Tab = FacFb
c − 1

4
gabFdeF

de

Show that DaTab = 0.

Exercise 2.
We consider a metric g which can be written in a coordinate system (t, r, θ, φ)

g = −A(r)dt2 +B(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (3.3.3)

1. Compute the Christoffel symbols of g.

2. Compute the Ricci tensor of g.

Exercise 3.
We consider the metric given for r > 2M by

g = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2).
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1. Show that it is a solution of Einstein vacuum equation.

2. Let r∗ = r+2m ln(r−2m), v = t+r∗ and w = t−r∗. Express the metric g in the coordinates
v, w, θ, φ.

3. Let v′ = exp( v
4m ) and w′ = − exp(− w

4m ). Express the metric g in the coordinates v′, w′, θ, φ
and show that the Schwarzchild solution can be extended for 0 < r ≤ 2m.

Exercise 4.
We are now looking for static spherically symmetric solution of vacuum Einstein-Maxwell so-

lutions, with g of the form (3.3.3) and Fαβ such that the only non zero coefficients are F01(r) =
−F10(r).

1. Show that their exists solutions under this ansatz, and that their exists M,Q such that

A = B−1 = 1− 2M
r + Q2

r2

2. Study the singularities of A : are they coordinate singularities or curvature singularities ?

Exercise 5.
In this exercise, we want to study the timelike geodesic in Schwarzschild space-time. We consider

a geodesic, parametrized by some parameter s : x(s) = (t(s), r(s), θ(s), φ(s)).

1. Recall the geodesic equation. Write the second order equation for θ(s), and explain why,
without loss of generality, we can assume that θ(s) is constant, equal to π

2 .

2. Recall why, for K a Killing vector field, g(ẋ,K) is constant along the geodesic. Show the two
conservation laws

E =

(
1− 2m

r

)
dt

ds
, L = r2 dφ

ds
,

where E and L are some constants depending on the geodesic.

3. We choose a parametrization where g(ẋ(s), ẋ(s)) = −1. Show that

1

2
ṙ2 +

1

2

(
1− 2m

r

)(
L

r2
+ 1

)
=

1

2
E2.

4. Discuss the possible trajectories of the geodesics.

Exercise 6.

1. Prove the second Bianchi identity,

(DZR)(X,Y )W + (DXR)(Y, Z)W + (DYR)(Z,X)W = 0

which can be written in coordinates

DaRbcde +DbRcade +DcRabde = 0.

2. Prove the so called contracted Bianchi identities Dµ(Rµν − 1
2Rgµν) = 0.

3. Assume that the Ricci tensor of (M, g) is vanishing. Prove that the Riemann tensor satisfies
the following equation

DaDaRbcde + 2Rc
fa
bRfade + 2Rd

fa
bRcafe + 2Re

fa
bRcadf = 0



34 CHAPTER 3. LORENTZIAN GEOMETRY AND GENERAL RELATIVITY

Exercise 7.
We study solutions of vacuum Einstein equations of the form gαβ = mαβ + γαβ where γαβ is

small.

1. Show that the linearization of the Ricci tensor around m is given by

δRαβ = −1

2
∂µ∂µγαβ +

1

2
∂µ(∂αγβµ + ∂βγαµ)− 1

2
∂α∂βγ.

where γ = gαβγαβ .

2. Deduce the linearization of the Einstein tensor.

3. Show that it is invariant by the transformation γαβ → γαβ + ∂αξβ + ∂βξα for all vector field
ξ (these transformations correspond to infenitesimal difeomorphisms).

4. We introduce γ̄αβ = γαβ − 1
2γmαβ . Write the linearized Einstein equations in term of γ̄αβ .

5. Show that the linearization of the Einstein tensor is invariant by the transformation γ̄αβ →
γ̄αβ + ∂αξβ + ∂βξα − ∂µξµmαβ for all vector field ξ.

6. Show that one can choose ξ such that ∂β γ̄αβ = 0.

7. How do you write the linearized Einstein equations in this gauge ?



Chapter 4

The wave equation

4.1 The Wave equation on Minkowski space-time : solution
by spherical means

In this section, we will consider the wave equation

∂2
t u−∆u = f,

subject to initial conditions (u, ∂tu)|t=0 = (g, h) where g and h are smooth functions on Rn. The
unknown is a function u : Rn × [0,∞) → R. On Rn, there is an elegant way to solve the wave
equation, which is the method of spherical means.

4.1.1 Solution for n=1

We can solve the one dimensional homogeneous wave equation{
∂2
t u− ∂2

xu = 0 in R× [0,∞)
u = g, ∂tu = h on R× {0}

We write
(∂t + ∂x)(∂t − ∂x)u = 0.

The solution of this equation can be written

u(x, t) = a(x+ t) + b(x− t)

where the function a and b should satisfy

a(x) + b(x) = g(x)

a′(x)− b′(x) = h(x)

Therefore we obtain

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(ξ)dξ. (4.1.1)

35
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4.1.2 Solution in 3 dimensions

We start with computations in Rn for any n. To solve the wave equation{
∂2
t u−∆u = 0 in Rn × (0,∞)
u = g, ut = h on Rn × {0} (4.1.2)

we introduce the spherical means

Mu(x, r) =
1

ωnrn−1

∫
|x−y|=r

u(y)dSy =
1

ωn

∫
|ξ|=1

u(x+ rξ)dSξ.

where ωn is the area of the sphere of radius 1 in Rn, and dSy, and dSξ are the volume form on the
sphere of radius r and of radius 1. Let us note that Mu(x, 0) = u(x). We calculate

∂r(Mu(x, r)) =
1

ωn

∫
|ξ|=1

ξ.∇u(x+ rξ)dSξ

=
1

ωnrn−1

∫
|η|=r

η

|η|
.∇u(x+ η)dSη

=
r

ωn

∫
|ξ|<1

∆xu(x+ rξ)dξ

=
r1−n

ωn
∆x

∫
|y|<r

u(x+ y)dy

=r1−n∆x

∫ r

0

ρn−1Mu(x, ρ)dρ.

Consequently
∂r
(
rn−1∂rMu(x, r)

)
= ∆xr

n−1Mu(x, r)

so (
∂2
r +

n− 1

r
∂r

)
Mu = ∆xMu.

If u satisfies �u = 0 then

∂2
tMu(x, r, t) =

(
∂2
r +

n− 1

r
∂r

)
Mu(x, r, t).

For n = 3 this yields
(∂2
t − ∂2

r )(rMu) = 0.

Moreover for t = 0 and r ≥ 0 we have rMu = rMg and ∂t(rMu) = rMh and for r = 0 we have
rMu = 0. To solve the one dimensional wave equation on the half line r ≥ 0, with the Dirichlet
boundary condition at r = 0 , we can extend first the initial data and the solution on the whole
line as odd functions.

Exercise 1.
Show that a solution to the problem ∂2

t u− ∂2
xu = 0 in [0,∞)××[0,∞)

u = g, ut = h on [0,∞)× {0}
u(0, t) = 0 for t ≥ 0
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can be written, for x < t,

u(x, t) =
1

2
(g(x+ t)− g(t− x)) +

1

2

∫ t+x

t−x
h(ρ)dρ.

We obtain, for r < t

rMu(x, r, t) =
1

2
((r + t)Mg(x, r + t)− (t− r)Mh(x, t− r)) +

1

2

∫ t+r

t−r
ρMh(x, ρ)dρ.

Consequently if we let r → 0 we obtain

u(x, t) =∂t(tMg(x, t)) + tMh(x, t)

=
1

4πt2

∫
|x−y|=t

(th(y) + g(y) +∇g(y).(y − x))dSy.

This formula is called the Kirchoff’s formula.

Remark 4.1.1. This method allow also to obtain a formula in dimension n = 2k + 1. Indeed if

one set U(r, t) =
(

1
r∂r
)k−1 (

r2k−1Mu

)
then U satisfies also the one dimensional transport equation.

4.1.3 Solution in 2 dimensions

A solution to the wave equation (4.1.2) in 2 dimensions can be seen as a solution to the wave
equation in 3 dimension, not depending on the third variable. We set

ũ(x1, x2, x3, t) = u(x1, x2, t), g̃(x1, x2, x3) = g(x1, x2), h̃(x1, x2, x3) = h(x1, x2).

We note also x = (x1, x2) and x̃ = (x1, x2, x3). We can compute

1

4πt2

∫
|ỹ−x̃|=t

g̃(ỹ)dSỹ =
1

2πt

∫
|y−x|≤t

g(y)

(t2 − |y − x|2)
1
2

dy.

Consequently the Kirchoff’s formula for ũ yield the following formula

u(x, t) =
1

2πt2

∫
B(x,t)

t2h(y) + tg(y) + t∇g(y).(y − x)√
t2 − |y − x|2

dy.

This formula is called the Poisson’s formula, and the method used to obtain it the method of
descent.

One can remark that there is a fundamental difference on how the solution is influenced by
the initial data between 3 and 2 dimension (and actually between odd and even dimensions). In 3
dimension, the solution at (x, t) depends only on the initial data in an infinitesimal neighbourhood
of the sphere of centre x and radius t. This implies for instance that if the initial data are supported
in a compact set, after a long enough time, the solution will vanish in this compact. It is not any
more the case in two dimensions ! As an example, one can compare the propagation of sound which
obey a wave equation in 3 dimensions, to the ripples made by a stone launched on water, which
obeys a wave equation in 2 dimensions.
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4.1.4 Duhamel’s principle

The solution of the inhomogeneous wave equation{
∂2
t u−∆u = f in Rn × (0,∞)
u = 0, ∂tu = 0 on Rn × {0}

is given by u(x, t) =
∫ t

0
U(x, t, s)ds, where for all s ≥ 0, U is the solution to{
∂2
tU(x, t, s)−∆U(x, t, s) = 0 in Rn × (0,∞)
U(x, s, s) = 0, ∂tU(x, s, s) = f(x, s) on R× {s}

This principle, which is not specific to the wave equation, is called the Duhamel’s principle. It
allows to obtain a representation formula for the solutions to the inhomogeneous wave equation
thanks to Kirchoff or Poisson’s formula.

There is a drawbacks to the formula obtained via spherical means : they seem to require a
lot of regularity for the initial data. We will see an other method of resolution, which is more
robust, meaning that it can be better adapted to perturbed problems, and which highlight the
”hyperbolicity” of the wave equation, which is a property of propagation of the regularity.

4.2 The Wave equation on Minkowski space-time : the en-
ergy method

4.2.1 Conservation of energy

We start with a formal computation. Assume that u is a solution to{
∂2
t u−∆u = F in Rn × (0,∞)
u = g, ∂tu = h on Rn × {0} (4.2.1)

If we multiply both sides of the equation by ∂tu we obtain

F∂tu =∂tu
(
∂2
t u−∆u

)
=

1

2
∂t(∂tu)2 + div(∂tu∇u)−∇∂tu.∇u

=
1

2
∂t
(
(∂tu)2 + |∇u|2

)
+ div(∂tu∇u)

Let

E(t) =

∫
Rn

((∂tu)2 + |∇u|2)dx.

The above equality yields the so called conservation of energy

E(t) = E(0) +

∫ t

0

∫
Rn

2F∂tudx.

This equality shows that the more natural function spaces to study wave equations are Sobolev
spaces : in these spaces the regularity of the solution corresponds to the regularity of the initial
data.
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4.2.2 The Sobolev space Hs

A very handy way to define the Sobolev spaces Hs(Rn) is via the Fourier transform. The Fourier
transform û of a function u ∈ L1 is defined by

û(ξ) =

∫
e−ix.ξu(x)dx.

This definition can be extended ”by duality” to tempered distributions (noted S ′).

Proposition 4.2.1. • The Fourier transform exchange derivation and multiplication : ∂̂ju(ξ) =
iξj û(ξ).

• The Schwartz space S is stable by Fourier transform

• The Fourier transform is, up to a constant, a bijective isometry on L2(Rn) whose inverse is
given by

u(x) =
1

(2π)d

∫
eix.ξû(ξ)dξ.

More precisely, he have the Parseval equality

1

(2π)d

∫
û(ξ)v̂(ξ)dξ =

∫
u(x)v(x)dx.

Definition 4.2.2. Let s ∈ R. We say that a tempered distribution u belongs to the Sobolev space
Hs if

∫
Rd(1 + |ξ|2)s|û(ξ)|2dξ <∞. We set then

‖u‖Hs =

(∫
Rd

(1 + |ξ|2)s|û(ξ)|2dξ
) 1

2

.

We say that a tempered distribution u belongs to the homogeneous Sobolev space Ḣs if
∫
Rd |ξ|

2s|û(ξ)|2dξ <
∞. We set then

‖u‖Ḣs =

(∫
Rd
|ξ|2s|û(ξ)|2dξ

) 1
2

.

Proposition 4.2.3. For all s ∈ R, Hs, equipped with the norm ‖.‖Hs is a Hilbert space.

Proposition 4.2.4. If m ∈ N, Hm is exactly the vector space of function u ∈ L2 whose derivatives
of order less or equal to m are also in L2. Moreover

‖̃u‖Hm =

 ∑
|α|≤m

‖∂αu‖2L2


is an Hilbert norm on Hm, equivalent to ‖.‖Hm .

Proposition 4.2.5. Let s ∈ R

• The space D(Rd) of C∞ compactly supported functions is dense in Hs(Rd).
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• For all s < t, Ht ⊂ Hs and we have the inequality

∀θ ∈ [0, 1], ‖u‖Hθs+(1−θ)t ≤ ‖u‖θHs‖u‖1−θHt .

• The multiplication by a function of S is a continuous function from Hs to itself.

To characterise the elements of (Hs)′ we will use the following proposition

Proposition 4.2.6. The map f 7→ (2π)d < f, . >H−s×Hs is an isometric isomorphism from H−s

to (Hs)′.

Proof. Let f ∈ H−s. The linear form

φf : u ∈ S 7→ 1

(2π)d

∫
f̂ ˆ̄udξ = 〈f, u〉S′,S ,

satisfies, thanks to Cauchy-Schwartz inequality

φ(f)(u) ≤ 1

(2π)d
‖f‖H−s‖u‖Hs .

Therefore, it can be extended to a linear form on Hs.

Conversely, if u ∈ (Hs)′, we can consider the linear form ũ on (L2)′, defined by

ũ(f) = u(Λ−sf),

where

Λs : Ht → Ht−s

f 7→ F−1((1 + |ξ|2)
s
2 f̂),

and use Riesz representation theorem on L2.

We will need in the next chapter the following Sobolev embeddings

Proposition 4.2.7. Let s ≥ 0.

• If s > d
2 then Hs(mRd) is an algebra which continuously embeds in C0(Rd) the space of

continuous functions which tend to zero at infinity.

• If 0 ≤ s < d
2 , let pc be the critical exponent defined by −s + d

2 = d
pc

, i.e pc = 2d
d−2s ∈ [2,∞[.

Then for all p ∈ [2, pc], H
s(Rd) continuously embeds in Lp(Rd) :

∃Cp,s > 0 such that ∀f ∈ Hs(Rd), ‖f‖Lp ≤ Cp,s‖f‖Hs .

• For s = d
2 , Hs(Rd) continuously embeds in all the Lp(Rd) for all 2 ≤ p <∞.
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4.2.3 Propagation of Hs norms

We note ‖∂u‖Hs = ‖∂tu‖Hs +
∑n
i=1 ‖∂iu‖Hs .

Theorem 4.2.8. Let s ∈ R. If u ∈ C([0, T ], Hs+1) ∩ C1([0, T ], Hs) and �u ∈ C([0, T ], Hs) then
for all 0 < t < T

‖∂u(t)‖Hs ≤ C
(
‖∂u(0)‖Hs +

∫ t

0

‖�u(τ, .)‖Hsdτ
)
.

Proof. Let us prove first the inequality in the case s = 0. In this case, the equality

(�u)∂tu =
1

2
∂t
(
(∂tu)2 + |∇u|2

)
+ div(∂tu∇u),

is satisfied in the sense of distributions in [0, t]×Rn. We can consider for instance a cut-off function
of the form χ(εx)φ(t). We have∫

[0,T ]×Rn
χ(εx)φ(t)(�u)∂tu = −1

2

∫
[0,T ]×Rn

(
χ(εx)φ′(t)

(
(∂tu)2 + |∇u|2

)
+ εφ(t)∂tu∇u.∇χ(εx)

)
.

Consequently, letting ε→ 0, and using Fubbini’s theorem, we obtain∫ T

0

φ(t)

∫
Rn

(�u)∂tudxdt = −1

2

∫ t

0

φ′(t)

∫
Rn

(
(∂tu)2 + |∇u|2

)
dxdt,

which means that in the sense of distributions

d

dt
E(t) =

∫
R2

(�u)∂tudx ≤ ‖�u‖L2

√
E(t),

so d
dt

√
E(t) ≤ ‖�u‖L2 , which implies

‖∂u(t)‖L2 ≤ C(‖∂u(0)‖L2 +

∫ t

0

‖�u(τ, .)‖L2dτ).

In the case s 6= 0, we use the operator Λs and notice that �Λsu = Λs�u : we can apply the
case s = 0 to Λsu to obtain the desired result.

4.2.4 Existence and uniqueness of solutions

We can now state a theorem about existence and uniqueness os solutions to (4.2.1).

Theorem 4.2.9. Let s ∈ Z and f ∈ Hs+1(Rn), h ∈ Hs(Rn), F ∈ C([0, T ], Hs). There exists a
unique solution to (4.2.1) in C([0, T ], Hs+1) ∩ C1([0, T ], Hs).

Proof. We first prove the unicity : if u and v are functions in C([0, T ], Hs+1) ∩ C1([0, T ], Hs)
which satisfy (4.1.2) then u − v is in C([0, T ], Hs+1) ∩ C1([0, T ], Hs) and satisfy �(u − v) = 0,
((u− v), ∂t(u− v))|t=0 = (0, 0). Consequently Theorem 4.2.8 yields for all t

‖∂(u− v)(t)‖Hs = 0,
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which implies u = v. We now prove the existence. If the initial data are regular enough, we can
obtain a solution with the method of spherical means. A more suited way would be to use the
Fourier transform to obtain an other representation formula. Formally, taking the space Fourier
transform of the equation (4.2.1) we obtain

∂2
t û− |ξ|2û = F̂

Solving this differential equation at fixed ξ with initial data û(0, ξ) = f̂(ξ), ∂tû(0, ξ) = ĥ(ξ) we
obtain

û(ξ) =
ĥ(ξ)

2π|ξ|
sin(2πtξ) + f̂(ξ) cos(2πtξ) +

∫ t

0

F̂ (s, ξ)

2π|ξ|
sin(2π(t− s)ξ)ds.

We can check a posteriori that the inverse transform of the above formula is a solution to (4.2.1)
which is in C([0, T ], Hs+1) ∩ C1([0, T ], Hs).

4.2.5 Finite speed of propagation

Theorem 4.2.10. Let u ∈ C([0, T ], Hs+1) ∩ C1([0, T ], Hs) be a solution of (4.2.1) such that for
some x0, t0 < T we have (f, h)|B(x0,t0) = (0, 0) and F |K(x0,t0) = 0 where K(x0, t0) = {(x, t) ∈
Rn × [0, t0]; |x− x0| ≤ t0 − t}. Then u is zero in K(x0, t0).

Proof. We can apply Stokes theorem to

f∂tu =
1

2
∂t
(
(∂tu)2 + |∇u|2

)
+ div(∂tu∇u)

in the domain K(x0, t0) ∪ [0, t].

4.3 The wave equation with variable coefficients

In this section, we will look at solutions of{
�gu = F in Rn × (0,∞)
u = f, ∂tu = h on Rn × {0} (4.3.1)

where g is a Lorentzian metric. We recall that

�gu = Dα∂αu =
1√
|det(g)|

∂α(gαβ
√
|det(g)|∂βu).

4.3.1 Energy identities

There is a geometric way of seeing the energy identities for solutions to the wave equation �gu = F ,
where g is a Lorentzian metric on a maniflod M. The stress energy-tensor of the scalar field u is
given by

Qαβ = ∂αu∂βu−
1

2
gαβg

µν∂µu∂νu.
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We can compute the divergence of Q :

DαQαβ =∂βuD
α∂αu+ ∂αuD

α∂βu− gαβgµν∂µuDα∂νu

=∂βu�gu+ ∂αuD
α∂βu− gµν∂µuDβ∂νu

=∂βu�gu+ ∂αuD
α∂βu− gµν∂µuDν∂βu

=∂βu�gu

where we used that Dν∂βu = Dβ∂νu. Consequently, if we contract with a vector field T we obtain

T (u)�gu = T β∂βu�gu = T βDαQαβ = Dα(T βQαβ)−QαβDαT β = Dα(T βQαβ)− 1

2
Qαβ

Tπαβ ,

where Tπ is the deformation tensor of T , which we recall is zero if T is a Killing vector field.
Let us assume thatM can be foliated by space-like hypersurfaces Σt, indexed by a time function

t. Let T be the vector field of unit normal to Σt, and let apply Stokes theorem in the region
∪s∈[0,t]Σs. We have∫

Σt

TαT βQαβdvolḡ =

∫
Σ0

TαT βQαβdvolḡ +

∫
∪s∈[0,t]Σs

(
1

2
Qαβ

Tπαβ + FT (u)

)
dvolg.

Proposition 4.3.1. We will assume, to simplify the geometric considerations, that we have a global
coordinate chart (t, xi) in which

|gαβ −mαβ | ≤
1

8
. (4.3.2)

We assume also that ∂tg ∈ L1([0, T ], L∞(Rn)), F ∈ L1([0, T ], L2(Rn)), (f, h) ∈ Ḣ1(Rn)× L2(Rn).
Let u ∈ C([0, T ], H1) ∩ C1([0, T ], L2) be a solution of (4.3.1). We have

‖u, ∂tu‖Ḣ1(Rn)×L2(Rn)(t) .

(
‖f, h‖ ˙H1(Rn)×L2(Rn)

+

∫ t

0

‖F‖L2(Rn)(s)ds

)
exp(

∫ t

0

‖∂tg‖L∞(Rn)(s)ds).

Proof. Let T = ∂t. Then we have TαT βQαβ = (∂tφ)2− 1
2g00

(
g00(∂tφ)2 + gij∂iφ∂jφ+ 2g0i∂tφ∂iφ

)
.

Under the hypothesis (4.3.2) their exist a constant C such that

C((∂tu)2 + |∇u|2) ≤ Q00 ≤
1

C
((∂tu)2 + |∇u|2).

We also calculate
∂tπαβ = (L∂tg)αβ = ∂tgαβ .

Consequently we have the estimate

|Qαβ∂tπαβ | ≤ C((∂tu)2 + |∇u|)2|∂tgαβ .

We have calculated∫
Σt

Q00dvolḡ =

∫
Σ0

Q00dvolḡ +

∫
∪s∈[0,t]Σs

(
1

2
Qαβ

∂tπαβ + F∂tu

)
dvolg.
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We will note |∂u|2 = (∂tu)2 + |∇u|2. We have

∫
Σt

(∂u)2dx ≤ C ′
∫ t

0

(
‖∂tg‖L∞(Σs)

∫
Σs

(∂u)2dx+ ‖F‖L2(Σs)

(∫
Σs

(∂u)2dx

) 1
2

)
ds+

∫
Σ0

(∂u)2dx.

(4.3.3)
Using the inequality 2ab ≤ εa2 + 1

ε b
2 we write

sup
s∈[0,t]

∫
Σs

(∂u)2dx ≤ C ′
∫ t

0

‖∂tg‖L∞
(∫

Σs

(∂u)2dx

)
ds+

1

ε

(∫ t

0

‖F‖L2(Σs)ds

)2

+ ε sup
s∈[0,t]

∫
Σs

(∂u)2dx+

∫
Σ0

(∂u)2dx.

The term with a factor ε can be absorbed by the left hand-side. We conclude with Gronwall lemma
that we recall in the next paragraph.

We recall here Gronwall lemma

Lemma 4.3.2. Let φ, ψ : [0, T ] → R+ such that φ is continuous and ψ is integrable. We assume
that their exists A ≥ 0 such that for all t ∈ [0, T ]

f(t) ≤ A+

∫ t

0

f(s)g(s)ds.

Then we have

f(t) ≤ A exp(

∫ t

0

g(s)ds).

Corollary 4.3.3. Let m ∈ N. In addition to the hypothesis of Proposition 4.3.1 we assume
∂g ∈ L1([0, T ], Cm(Rn)), F ∈ L1([0, T ], Hm(Rn)), (f, h) ∈ Hm+1(Rn) × Hm(Rn). Let u ∈
C([0, T ], Hm+1) ∩ C1([0, T ], Hm) be a solution of (4.3.1). We have

‖∂u‖Hm(Rn)(t) .

(
‖∇f, h‖Hm(Rn) +

∫ t

0

‖F‖Hm(Rn)(s)ds

)
exp(

∫ t

0

‖∂g‖Cm(Rn)(s)ds).

Moreover

‖u‖Hm ≤ (1 + T )

(
‖f, h‖Hm+1(Rn)×Hm(Rn) +

∫ t

0

‖F‖Hm(Rn)(s)ds

)
exp(

∫ t

0

‖∂g‖Cm(Rn)(s)ds).

Proof. We write the equation for ∇mu, any space derivative of order m : �g∇mu = [�g,∇m]u +
∇mF and we apply Proposition 4.3.1. For this purpose, we have to estimate [�g,∇m]u in L2. We
can write

|[�g,∇m]u| .
∑

i0+i1+...+im≤m+1, i0≤m

|∂i0∂u||∂i1g|..|∂img|,

And consequently

‖[�g,∇m]u‖L2 ≤ C(‖g‖Cm+1)‖∂u‖Hm .
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Consequently (4.3.3) written for ∇mu yields

‖∂u‖2Hm(Σt)
≤ C ′

(
‖∂u‖2Hm(Σ0) +

∫ t

0

(
C(‖g‖Cm+1)‖∂u‖2Hm + ‖∇mF‖L2‖∂u‖Hm

)
ds

)
Once again we can conclude with Gronwall.

The estimate for ‖u‖L2 which is what is added in the second estimate of Corollary 4.3.3 is a
consequence of

‖u‖L2(Σt) ≤ ‖u‖L2(Σ0) +

∫ t

0

‖∂tu‖L2 ≤ ‖u‖L2(Σ0) + t sup
[0,t]

‖∂tu‖L2 .

4.3.2 Existence of solution to (4.3.1)

The energy identities of Proposition 4.3.1 and Corollary 4.3.3 show directly the unicity of the
solutions to (4.3.1). In this section we will see how, by duality, these a priori energy estimate can
give us the existence.

Theorem 4.3.4. Let m ∈ N. In addition to (4.3.2) we assume ∂g ∈ L1([0, T ], Cm+2(Rn)), F ∈
L1([0, T ], Hm(Rn)), (f, h) ∈ Hm+1(Rn)×Hm(Rn). Their exists a unique solution

u ∈ C([0, T ], Hm+1) ∩ C1([0, T ], Hm),

of (4.3.1).

The proof will proceed by duality, using Hahn Banach’s theorem that we recall here

Theorem 4.3.5. Let G be a subvector space of E, a normed vector space, and g : G → R be a
linear continuous form of norm ‖g‖G′ = supx∈G,‖x‖≤1 g(x). Then there exists a continuous linear
form f ∈ E′ such that f |G = g and ‖f‖E′ = ‖g‖G′ .

You may find the proof in [1] We will need also a-priori estimates for solutions of (4.3.1) in
H−m.

Lemma 4.3.6. Let m ∈ N. In addition to the hypothesis of Proposition 4.3.1 we assume ∂g ∈
L1([0, T ], Cm+2(Rn)), F ∈ L1([0, T ], H−m(Rn)), (f, h) ∈ H−m+1(Rn)×H−m(Rn). Let

u ∈ C([0, T ], H−m+1) ∩ C1([0, T ], H−m),

be a solution of (4.3.1). We have

‖∂u‖H−m(Rn)(t) .

(
‖∇f, h‖H−m(Rn) +

∫ t

0

‖F‖H−m(Rn)(s)ds

)
exp(

∫ t

0

‖∂g‖Cm+2(Rn)(s)ds).

(4.3.4)

Proof. We proceed by induction on m : we know from Corollary 4.3.3 that the property is true
for m = −1, 0. We will now prove that if (4.3.4) holds for some m0, it holds for m0 + 2 : Let
u ∈ C([0, T ], H−m0−1) ∩ C1([0, T ], H−m0−2). Let

v = Λ−2u = (1−∆)−1u ∈ C([0, T ], H−m0+1) ∩ C1([0, T ], H−m0)



46 CHAPTER 4. THE WAVE EQUATION

We have

‖∂u‖H−m0−2(Rn)

=‖∂v‖H−m0

≤
(
‖Λ−2∇f,Λ−2h‖H−m0 (Rn) +

∫ t

0

‖�gv‖H−m0 (Rn)(s)ds

)
exp(

∫ t

0

‖∂g‖Cm0 (Rn)(s)ds).

We can write
�gu = (1−∆)�gv + [1−∆,�g]v.

Moreover, [1−∆,�g]v is a sum of products of up to 2 derivatives of ∂g and up to 2 derivatives of
∂v. We can use the result of Exercise (4.4) which says that

‖ab‖H−k ≤ C‖a‖Ck‖b‖Hk

to write

‖�gv‖H−m0 =‖(1−∆)�gv‖H−m0+2

≤ ‖�gu‖H−m0+2 + ‖[1−∆,�g]v‖H−(m0+2)

≤ ‖�gu‖H−m0+2 + C(‖∂g‖Cm0+4)‖∂v‖H−m0

so once again we can conclude with Gronwall lemma.

We are now ready to prove Theorem 4.3.4.

Proof. We consider first the case where f = h = 0. Let E = L1([−1, T ], H−m−1) and let G be
the subset of E which consists of functions w such that their exists v ∈ C∞c ((−1, T ),Rn) such that
w = �gv in [0, T ]× Rn. Let φ : G→ R defined by

φ(w) =

∫ T

0

∫
Rn
vFdvolg,

We have

|φ(w)| ≤
∫ T

0

‖F‖Hm(Rn)‖v‖H−mdt

≤ C(T, g)

(∫ T

0

‖F‖Hm(Rn)dt

)(∫ T

0

‖�gv‖H−m−1(Rn)

)

≤ C(T, g)

(∫ T

0

‖F‖Hm(Rn)dt

)
‖w‖L1([−1,T ],H−m−1(Rn)).

where we have used the energy estimate on C([0, T ], H−m) ∩ C1([0, T ], H−m−1) for the backward
solution v to the equation �gv = w with data (v, ∂tv)|t=T = (0, 0).

Consequently, with Hahn-Banach theorem, we know that there exists Φ ∈ L1([−1, T ], H−m−1)′,

which coincides with φ on G and such that ‖Φ‖ ≤ C(T, g)(
∫ T

0
‖F‖Hmdt). Φ can be represented by

a function u ∈ L∞([−1, T ], Hm+1) which satisfies, for all v ∈ C∞c ((0, T )× Rn)∫ T

0

∫
Rn
vFdvolg =

∫ T

0

∫
Rn
u�gvdvolg =

∫ T

0

∫
Rn

(�gu)vdvolg,
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which yields�gu = F on [0, , T ]×Rn. Moreover, for all h ∈ C∞c ((−1, 0)×Rn) we have
∫
uhdvolg = 0,

which yields u(t, x) = 0 for t < 0. We can write, for all v ∈ C∞c ((−1, T )× Rn)∫ T

0

∫
Rn
Fvdvolg =

∫ T

−1

∫
Rn

(�gu)vdvolg =

∫ T

−1

∫
Rn
gαβ∂αu∂βvdvolg.

This yields∫ T

−1

∫
RN

gNNN(v)N(u) ≤ C(‖F‖L1([0,T ],Hm)‖v‖L∞([0,T ],H−m) + ‖∇u‖L∞([0,T ]Hm)‖∇v‖L1([0,T ],H−m))

≤C‖N(v)‖L1([0,T ],H−m+1), ,

where we have noted N the normal to Σt. This yields ∂tu ∈ L∞([0, T ], Hm−1), and so u ∈
C([0, T ], Hm−1). Thanks to the equation �gu = F we have also ∂2

t u ∈ L∞([0, T ], Hm−2), and so
u ∈ C1([0, T ], Hm−2). This allows us to conclude that (u, ∂tu)|t=0 = (0, 0)

Let us now consider the case F = 0 but f and h non zero. Let v(x, t) = f(x) + th(x). We
have �gv ∈ L1([0, T ], Hm−1). Thanks to what we have done above, we know that their exists
�gw = −�gv, and (w, ∂tw)|t=0 = (0, 0). Let now u = w + v : it is a solution to the equation.

For the moment, we have shown existence of solutions with an apparent loss of regularity. To
prove the propagation of the desired regularity, we can approximate F, f, h and the metric g by
smooth function and metrics Fn, fn, hn and gn. For all n, what we have done above allows us to
find un ∈ C1([0, T ], Hk) for any k, solution of{

�gnun = Fn in Rn × (0,∞)
un = fn, ∂tun = hn on Rn × {0}

Then Corollary 4.3.3 allows to show that un is a Cauchy sequence in C1([0, T ], Hm)∩C0([0, T ], Hm+1).
The limit is our solution u and has the desired regularity.

4.4 Exercises

Exercise 2.
The aim of this equation is to derive the conservation laws for the wave equation. Let (M, g)

be a Lorentzian manifold. We consider a solution to the wave equation �gu = 0. We recall that
�gu = Dα∂αu.

1. Let Tµν = ∂µu∂νu− 1
2gµν∂

αu∂αu. Show that DµTµν = 0.

2. Let K be a Killing field for the metric g. Show that Dµ(TµνK
ν) = 0.

3. We consider now the case (M, g) = (R1+3,m), and �u = 0. Show that the above formula,
with K = ∂t yields the energy identity when integrating over a space-time slab. What do you
obtain with K the other Killing fields of Minkowski metric ?

Exercise 3.
The aim of this exercise is to show that Hs is an algebra for s > n

2 .

1. Let u, v ∈ S(Rn). Show that F(u ∗ v) = F(u)F(v). Where we have noted F the Fourier
transform, and ∗ the convolution

u ∗ v(x) =

∫
Rn
u(y)v(x− y).
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Deduce F(uv).

2. We want to show that Hs(Rn) is an algebra for s > n
2 . Let u, v ∈ S : express the Hs norm

of uv.

3. Show that for s > 0 we have

(1 + |ξ|2)
s
2 ≤ Cs((1 + |ξ − η|2)

s
2 + (1 + |η|2)

s
2 ).

4. Use Minkowski inequality(∫ (∫
f(x, y)dx

)2

dy

) 1
2

≤
∫ (∫

f(x, y)2dy

) 1
2

dx

to prove that, for s > 0

‖uv‖Hs ≤ Cs(‖Fu‖L1‖v‖HS + ‖Fv‖L1‖u‖HS ).

5. Conclude that Hs is an algebra for s > n
2 .

Exercise 4.
Let u be a solution to the wave equation �u = 0 with smooth compactly supported initial data

(u, ∂tu)|t=0 = (u0, u1).

1. Show that �Zu = 0 for Z ∈ {∂α,Ωα,β , S} where Ωij = xi∂j − xj∂i, Ω0i = t∂i + xi∂t,
S = t∂t + r∂r, with r the polar coordinate r = |x|.

2. Show that ‖∂Zu(t)‖L2 ≤ C(u0, u1).

3. We have the following inequality, called Klainerman-Sobolev inequality for functions in Rn :

(1 + t+ r)
n−1
2 (1 + |r − t|) 1

2 |f(t, x)| ≤ Cn
∑

|I|≤n+1
2

‖Zf‖L2(Rn).

Deduce a decay estimate for the solution u to the wave equation.

Exercise 5.

1. Let u ∈ Hm(Rn) with m ∈ N. Show that for all v ∈ C∞c we have

‖uv‖Hm ≤ ‖v‖Cm‖u‖Hm .

2. We now assume u ∈ H−m with m ∈ N. Show that

‖uv‖H−m ≤ ‖v‖Cm‖u‖H−m .

Exercise 6.
We recall that the metric in the exterior of a Schwarzschild black-hole can be written

g = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2(θ)dφ2).
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1. Express �gφ in the coordinates (t, r, θ, φ).

2. ∂
∂t is a Killing field : what is the conserved energy associated to it ?

3. We consider a solution to �gφ = F , with initial data (φ, ∂tφ)|t=0 = (u0, u1) : what estimate
do you obtain on ∂φ ?

4. Recall the expression of g in the coordinates t, r∗, θ, φ where r∗ = r+2m ln(r−2m). Show that
if φ satisfies �gφ = 0 and (φ, ∂tφ)|t=0 is zero for a ≤ r∗ ≤ b then φ(t, x) is zero for b+t ≤ r∗ ≤ a−t.

Exercise 7.
The aim of this exercise is to prove Klainerman Sobolev inequality.

1. Show that for all function f : Rn+1 → R we have

|∂αf(t, x)| ≤ 1

1 + |t− x|
∑
Z∈Z
|Zf |

where Z = {∂α,Ωα,β , S}.
2. Let f ∈ C∞c (Rn+1). We write

f = f1 + f2,

where
f1 = χ

(r
t

)
f, f2 =

(
1− χ

(r
t

))
f,

and χ is a cut-off such that χ(ρ) = 1 for ρ ≤ 1
2 and χ(ρ) = 0 for ρ ≥ 2

3 . By applying the Sobolev
embeding Hs(Rn) ⊂ L∞(Rn) for s > n

2 to ft = f1(t, tx). show that

|f1(t, x)| . 1

t
n
2

∑
|α|≤dn2 e

‖tα∇αf1‖L2(Rn).

3. With the first question, deduce that

t
n
2 |f1(t, x)| .

∑
|α|≤dn2 e

‖Zαf1‖L2(Rn).

4. We consider f2. Using the following inequality (where we note by θ the coordinates on the
sphere),

(1 + t+ r)(1 + |t− r|)(f2(t, r, θ))2 .
∫ r

t
2

∂ρ
(
(1 + t+ ρ)(1 + |t− ρ|)f2(t, ρ, θ)2

)
dρ,

the standard Sobolev inequality on the sphere and the first question, show that f2 satisfy the
Klainerman Sobolev inequality

(1 + t+ r)
n−1
2 (1 + |r − t|) 1

2 |f(t, x)| ≤ Cn
∑

|I|≤n2 +1

‖ZIf‖L2(Rn).

5. Conclude.
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Chapter 5

A local existence result

5.1 Local well-posedness for a semi-linear wave equation

In this short chapter, we want to show local existence of solutions for a non linear equation of the
form {

�u = (∂tu)2, in Rd × R
(u, ∂tu) = (u0, u1) in Rd × {0} (5.1.1)

This equation is a toy model for Einstein equations. Our analysis can easily be generalized to
equations of the form �u = F (x, u, ∂u) where F is a smooth function of its arguments. The aim of
this chapter is to prove the following theorem.

Theorem 5.1.1. Let s > d
2 and let (u0, u1) ∈ Hs+1 ×Hs. There exists a time T > 0, dependant

only on ‖u0‖Hs+1 and ‖u1‖Hs such that there exists a unique solution to the equation (5.1.1)

u ∈ C0([0, T ], Hs+1) ∩ C1([0, T ], Hs).

Moreover, the solution depends continuously on the initial data. If u
(i)
0 , u

(i)
1 is a sequence of functions

which tend to u0, u1 in Hs+1 × Hs as i → ∞, then the corresponding solution u(i) tends to u in
C0([0, T ], Hs+1) ∩ C1([0, T ], Hs).

Remark 5.1.2. When we have such a theorem, we say that the equation is well posed in the space
Hs+1 ×Hs.

In the following, we note X sT = C0([0, T ], Hs+1) ∩ C1([0, T ], Hs) and

‖u‖X sT = sup
t∈[0,T ]

(‖u(t)‖Hs+1 + ‖u(t)‖Hs) .

Let us now prove the theorem.

Proof. We will construct iteratively a sequence of approximations of the solution, and show the
convergence of this sequence on a time interval [0, T ] where T will be chosen in the process, small
enough compared to ‖u0‖Hs+1 and ‖u1‖Hs .
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We start with u(0) the solution to the homogeneous equation �u(0) = 0, with initial data
(u(0), ∂tu

(0))|t=0 = (u0, u1). Once u(n) is constructed, we take u(n+1) to be the solution of the
inhomogeneous linear equation

�u(n+1) = (∂tu
(n))2,

with initial data (u(n+1), ∂tu
(n+1))|t=0 = (u0, u1).

The strategy is to show that for T small enough :

• the sequence u(n) is uniformly bounded in X sT ,

• the sequence u(n) is a Cauchy sequence in X sT .

We start with the first point. It is sufficient to show the existence of some A > 0 satisfying

‖u(n)‖X sT ≤ A ⇒ ‖u(n+1)‖X sT ≤ A.

Using the energy estimate given by Theorem 4.2.8 we can write

‖un+1‖X sT ≤ C

(
‖u0‖Hs+1 + ‖u1‖Hs +

∫ T

0

‖(∂tu(n))2‖Hs
)
.

In the proof, we will denote by C any numerical constant, which may not be the same in every line,
the important point being that it does not depend on the functions we consider. We recall that,
for s > d

2 , the Sobolev space Hs is an algebra. Consequently

‖(∂tu(n))2‖Hs ≤ C‖(∂tu(n))‖2Hs ≤ CA2,

and we can write

‖un+1‖X sT ≤ C
(
‖u0‖Hs+1 + ‖u1‖Hs + TA2

)
.

By taking

A ≥ 2C (‖u0‖Hs+1 + ‖u1‖Hs)

and then choosing T small enough such that

TCA ≤ 1

2

we obtain

‖un+1‖X sT ≤ A,

which prove the first point. Let us not that the condition we have on T at this stage is

T ≤ C

‖u0‖Hs+1 + ‖u1‖Hs
,

where again C is some numerical constant.
Let us now prove the second point. We will show iteratively that

‖u(n+1) − u(n)‖X sT ≤
2A

2n
.
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We note that A, which has been defined on the first step, is chosen such that this property is
true for n = 0. Assuming that it is true for n−1, we consider the equation satisfied by u(n+1)−u(n)

:
�(u(n+1) − u(n)) = (∂tu

n)2 − (∂tu
(n−1))2,

with zero initial data. Consequently the energy estimate yields

‖u(n+1) − u(n)‖X sT ≤C
∫ T

0

‖
(
∂tu

n + ∂tu
(n−1)

)(
∂tu

n − ∂tu(n−1)
)
‖Hs .

≤2CTA
2A

2n

where we have used again the fact that Hs is an algebra. By taking T such that 2CTA ≤ 1, we
can conclude the proof by iteration.

This show that u(n) is a Cauchy sequence in X sT , which is a Banach space, so u(n) has a limit
u, and this limit satisfies (5.1.1).

5.2 Exercises

Exercise 1.
The aim of this exercise is to show a local existence result for a quasilinear equation, that is to

say an equation in which the coefficients of the second order terms depend on the solution itself.
Let s ∈ N with s > 3. The aim of this exercice is prove that when the parameter ε > 0 is small

enough, their exists T > 0 such that for all (u0, u1) ∈ Hs+1(R3)×Hs(R3) with

‖(u0, u1)‖Hs+1×Hs ≤ 1

their exists a unique u ∈ C([0, T ], Hs+1) ∩ C1([0, T ], Hs) solution of{
�u = −ε (∂x1

(u∂x1
u) + ∂x2

(u∂x2
u))

(u, ∂tu)|t=0 = (u0, u1)
(5.2.1)

where �u = −∂2
t u+ ∆u.

1. Let u ∈ C([0, T ], Hs+1) ∩ C1([0, T ], Hs) . We consider the metric g defined by

g = −(1 + εu)dt2 + (dx1)2 + (dx2)2 + (1 + εu)(dx3)2.

Calculate �gφ for any function φ, and show that �gu = 0.

2. Let m > 0. We assume that u, ∂tu are bounded in Cm+3 . Recall why, for ε > 0 small
enough their exists a unique solution φ ∈ C([0, T ], Hm+1) ∩ C1([0, T ], Hm) to �gφ = 0 with
(φ, ∂tφ)|t=0 = (φ0, φ1) ∈ Hm+1 ×Hm.

3. We consider still the equation �gφ = 0. We note ∇αφ = ∂α1
x1
∂α2
x2
∂α3
x3
φ and |α| = α1 +α2 +α3.

Show that we can write

�∇αφ+ ε (∂x1
(u∂x1

∇αφ) + ∂x2
(u∂x2

∇αφ)) = Fα

with |Fα| ≤ C
∑
|β|+|γ|≤|α|

∑3
µ=0

∑3
ν=0 |∇β∂µu∇γ∂νφ|.
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4. Show that

‖Fα‖L2(R3) ≤ C(‖∂u‖
Cb
|α|
2
c‖∂φ‖H|α| + ‖∂φ‖

Cb
|α|
2
c‖∂u‖H|α|).

5. Deduce that for |α| ≤ s we have

‖Fα‖L2(R3) ≤ C‖∂u‖Hs‖∂φ‖Hs .

We assume (u0, u1) smooth and compactly supported. We want to construct a sequence u(n)

by induction. We take u(0) = 0 and u(n+1) to be the solution of{
�u(n+1) = −ε

(
∂x1(u(n)∂x1u

(n+1)) + ∂x2(u(n)∂x2u
(n+1))

)
(u, ∂tu)|t=0 = (u0, u1)

(5.2.2)

6. Show that for ε > 0 small enough, their exists T > 0 such that the sequence is well defined
in C([0, T ], Hs+1) ∩ C1([0, T ], Hs) and their exists A such that

‖(u(n), ∂tu
(n))‖Hs+1×Hs ≤ A.

7. Show that, up to the choice of a smaller T , u(n) is a Cauchy sequence in C([0, T ], H1) ∩
C1([0, T ], L2) .

8. Conclude (also in the case of (u0, u1) only in Hs+1(R3)×Hs(R3)).

Exercise 2.
The aim of this exercise is to show that for some non linear equations, when the initial data are

sufficiently small, the solution exists for all time.
We consider the equation �u = (∂tu)2, on R4+1 with initial data (u, ∂tu)|t=0 = (εu0, εu1) with

(u0, u1) smooth compactly supported functions. The aim of the exercice is to show that their exists
ε0 such that if 0 ≤ ε ≤ ε0 the solution exists for all time.

We recall that the vector fields in Z = {∂α,Ωα,β , S} satidfy [�, Z] = c(Z)�, with c(Z) = 0
except c(S) = −2. We recall also the Klainerman-Sobolev inequality

(1 + t+ r)
n−1
2 (1 + |r − t|) 1

2 |f(t, x)| ≤ Cn
∑

|I|≤n2 +1

‖ZIf‖L2(Rn).

Let N ≥ 6.

1. Show that their exists T > 0, such that the solution u exists on [0, T ]× R4 and satisfy∑
|I|≤N

‖∂ZIu‖L2 ≤ 2A0ε.

where A0 is such that the above inequality is satisfied at t = 0.
Let T be the biggest time satisfying the above condition. Let us assume that T < ∞ and find

a contradiction for ε ≤ ε0 (to be determined).
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2. Show that for |I| ≤ N − 3 we have

(1 + t)
3
2 |∂ZIu| ≤ CA0ε.

3. Show that
|ZI(∂tu)2| ≤ C

∑
|J|+|K|≤|I|

|∂ZJu∂ZKu|.

4. Deduce that for |I| ≤ N

|ZI(∂tu)2| ≤ Cε

(1 + t)
3
2

∑
|J|≤|I|

|∂ZJu|,

and ∫ t

0

‖ZI(∂tu)2‖L2 ≤ C(A0ε)
2.

5. Conclude.

6. What would be the result in R3+1 ?
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Chapter 6

Choquet Bruhat’s theorem

The aim of this final chapter is to show that the initial value problem for Einstein equation is
well-posed : given initial data which are sufficiently regular, one can find a unique local solution to
Einstein vacuum equation which induce this initial data set. A good intuition of the problem can
be obtained with the study of Maxwell equations.

6.1 Preliminaries : Maxwell’s equations in Lorentz gauge

We recall Maxwell equations in vacuum

∇∧ E =− ∂B

∂t
, (6.1.1)

∇∧B =
∂E

∂t
, (6.1.2)

∇.E =0, (6.1.3)

∇.B =0. (6.1.4)

The initial data, are (E0, B0) at time t = 0. These data are not arbitrary since the equations (6.1.3)
and (6.1.2) should also be satisfied by E0 and B0.

To solve Maxwell equation, we introduce the electromagnetic potential. From the equation
(6.1.4) we can write that B is the rotational of some vector A :

B = ∇∧A.

Then from the equation (6.1.1) one can write ∇∧ (E + ∂A
∂t ) = 0, and this yields

E = −∂A
∂t

+∇V,

for some function V . We now give the equation (6.1.2) and (6.1.3) in term of A and V

− ∂

∂t
∇.A+ ∆V =0

∇(∇.A)−∆A =− ∂2A

∂t2
+
∂

∂t
∇V.
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There is a gauge freedom in the choice of A, V . Indeed a transformation of the form

A→ A+∇χ, V → V + ∂tχ

does not change the value of E and B. We can use this freedom to impose a condition on A and
V to write the equation in a more tractable form. A possibility is to work in Lorentz gauge, that
is to say under the condition

∇.A = ∂tV. (6.1.5)

Under this condition, the equation for A and V are simply

�A = 0, �V = 0. (6.1.6)

The strategy to solve Maxwell equations in Lorentz gauge is the following.

• The physical initial data are (E0, B0) at time t = 0, satisfying the constraints (6.1.3) and
(6.1.4). The initial data for the equations the potential, (V, ∂tV )|t=0 and (A, ∂tA)|t=0 are
chosen such that

– B0 = ∇∧A,

– V is free,

– E0 = −∂tA+∇V

– The Lorentz gauge condition is satisfied at t = 0 : ∂tV = ∇.A.

• We solve (6.1.6) with these initial data.

• We show that we have indeed constructed a solution to Maxwell equation. For this, what we
need to show is that the Lorentz condition (6.1.5) remains true for all time. We note that we
have

�(∂tV −∇.A) = 0.

Therefore, by unicity of the solutions to the wave equation, it is sufficient to show that initially,
we have

∂tV −∇.A = 0 (6.1.7)

∂t(∂tV −∇.A) = 0. (6.1.8)

The first condition is ensured by the choice of ∂tV at time t = 0. For the second, we use the
equation �V = 0, and the initial condition on ∂tA to write

∂t(∂tV −∇.A) = ∇.(∇V − ∂tA) = ∇.E0.

Since E0 is assumed to satisfy the constraint ∇.E0 = 0, the initial condition (6.1.8) is satisfied.
The Lorentz condition is true for all time, and we have solved Maxwell equations.
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6.2 Local well posedness for Einstein equations

We recall that the initial data for Einstein equation are a triplet (Σ, ḡ,K) with Σ a 3-dimensional
manifold, ḡ a Riemannian metric on Σ and K a symmetric 2-tensor. Solving Einstein equations
with these data consist in finding (M, g) such that

Σ ⊂M, g|Σ = ḡ,

and K is the second fundamental form of the embedding of Σ in M. The initial data are not
arbitrary. Indeed, we have the following corollary of Proposition 3.2.3

Corollary 6.2.1. The Einstein tensor Gµν = Rµν − 1
2Rgµν satisfies

G0j = N(∂j(trḡK)−∇hKhj)

G00 =
1

2
(R̄+ (trḡK)2 − |K|2),

where R̄ is the scalar curvature of ḡ.

Consequently, the equations G0i = 0 and G00 only involve ḡ and K and should be satisfied by
the initial data. They can be seen as the equivalent of (6.1.3) and (6.1.4) for Maxwell equations.

The Theorem we will be interested in is the following, due to Choquet-Bruhat [5] for the local
existence part, and to Choquet-Bruhat and Geroch [2] for the uniqueness part.

Theorem 6.2.2. Let (Σ, ḡ,K) be smooth initial data, satisfying the constraint equations. Their
exists a unique, maximal, globally hyperbolic solution to the Einstein equation, (M, g) corresponding
to these initial data.

Let us explain a little this theorem.

• By globally hyperbolic, we mean that every curve which is timelike and inextendible should
intersect Σ, which is an hypersurface of M . We say also that Σ is a Cauchy hypersurface for
M .

• By unique and maximal, we mean that every other solution with these initial data can be
isometrically embedded in M .

We will give the main ideas of the proof of this theorem, which is based on the use of wave
coordinates.

6.3 Einstein equations in wave coordinates

We have the following lemma.

Lemma 6.3.1. In any coordinate system xα, the Ricci tensor can be written

Rνν = −1

2
�ggµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) + Pµν(g)(∂g, ∂g),

where

Hρ = �gx
ρ =

1√
|det(g)|

∂α(gαρ
√
|det(g)|),

and Pµν(g)(∂g, ∂g) is a quadratic form in the first derivatives of g.
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Proof. We recall the expression of the Ricci tensor in a coordinate system

Rµν = ∂αΓαµν − ∂µΓααν + ΓαµνΓβαβ − ΓαµβΓβνα,

and the expression for the Christophel symbols

Γµαβ =
1

2
gµρ(∂αgρβ + ∂βgρα − ∂ρgαβ).

Therefore, we can compute (as in the exercise on the linearized Einstein equations)

Rµν = −1

2
gαβ∂α∂βgµν +

1

2
gαβ(∂µ∂βgνα + ∂ν∂βgαµ)− 1

2
gαβ∂µ∂νgαβ + P̃µν(g)(∂g, ∂g),

where P̃µν(g)(∂g, ∂g) stand for the quadratic terms. We note that gαβ∂α∂βgµν is equal to �ggµν
plus a quadratic term in ∂g. Consequently, if we write

Hα = ∂βg
βα − 1

2
gβρ∂αgβρ,

we can write

Rνν = −1

2
�ggµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) + Pµν(g)(∂g, ∂g).

We also note that
Hρ = −gαβΓραβ = ∇α∂αxρ = �gx

ρ.

This concludes the proof of the lemma.

The wave coordinate condition consists in taking Hρ = 0, to remove all the second order term
in the equations, except the one which can be written as a wave equation. If Hρ = 0, then Einstein
equations can be written

�ggµν = Pµν(∂g, ∂g). (6.3.1)

This is analogous to the Lorentz gauge for Maxwell equations. The strategy to solve Einstein
equation in wave coordinates is the following.

• The physical initial data are (ḡ,K). To solve (6.3.1) we need the initial data for gµν and ∂tgµν
at time t = 0. We choose them with the following process.

– We take gij = ḡij ,

– g00 and g0i are free : we can choose g00 = −1 and g0i = 0 without loss of generality,

– We take ∂tgij = Kij .

– We choose ∂tg00 and ∂tg0i in order for the wave coordinate condition to be satisfied at
time t = 0.

• We solve (6.3.1) with this initial data. Since it is a nonlinear equation, the time of existence
T is a priori only finite. As the semilinear model we have studied, the equation (6.3.1) is well
posed in Hs+1 ×Hs with s > 3

2 , under the additional condition that |gij − δij | ≤ 1
8 .

• We now have to check that the metric g, whose coefficients are given by the solution of (6.3.1)
is indeed a solution to Einstein equations.
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Let us describe this last point. What we need to show is that the wave coordinate condition is true
as long as the solution exists. We consider the metric g we have constructed : we can calculate its
Ricci tensor

Rνν = −1

2
�ggµν +

1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) + Pµν(g)(∂g, ∂g),

=
1

2
(gµρ∂νH

ρ + gνρ∂µH
ρ) ,

where we have used the wave equations satisfied by g. Let us now recall the contracted Bianchi
identity, which are always satisfied by the Einstein tensor of a metric

∇µ(Rµν −
1

2
Rgµν) = 0.

Replacing the Ricci tensor by its expression in term of H, we obtain for H a system of linear,
homogeneous wave equations with variable coefficients. By unicity of the solution, it is therefore
sufficient to check that the initial data vanish at time t = 0. The condition Hρ|t=0 = 0 is ensured
by the choice of ∂tg00 and ∂tg0i. To obtain the remaining condition, ∂tH

ρ|t=0 = 0, as for Maxwell
equations, we look at the constraint equations. We have that, at time t = 0

R00 −
1

2
Rg00 = 0, R0i = 0.

Again, the Ricci tensor can be expressed in term of ∂H, and here more precisely in term of ∂tH,
since H vanishes at time zero. The condition we obtain on ∂tH can be inverted, yielding the desired
initial condition ∂tH

ρ
t=0 = 0.

So far, we have prove the local existence of solutions when there is a global coordinate chart on
Σ on which the initial data are close enough to the Minkowski metric. In the general case, we can
consider, for any point p ∈ Σ, a coordinate chart around p in which at p, gij = δij . Working in a
smaller neighbourhood of p if necessary, it is possible to assume that the space-time metric is close
to the Minkowski metric. Then, the strategy is to cover Σ by such neighbourhood, and show that
in the intersection of two neighbourhoods, the constructed solutions are isometric to each other.

6.4 Exercises

Exercise 1.
The aim of this exercise is to construct approximate gravitational wave solutions to Einstein

equation. We study solutions of vacuum Einstein equations of the form gαβ = mαβ + γαβ where
γαβ is small. We recall that the linearized Einstein equations around Minkowski metric are

δGµβ = −1

2
∂α∂αγ̄µβ +

1

2
∂α(∂β γ̄αµ + ∂µγ̄βα)− 1

2
mµβ∂

α∂ργ̄αρ = 0,

where γ̄αβ = γαβ − 1
2γmαβ . These equation are invariant by the transformations γ̄αβ → γ̄αβ +

∂αξβ + ∂βξα − ∂µξµmαβ for all vector field ξ.

1. Write the linearized constraint equations : δG00 = 0, δG0i = 0.

2. Remember why one can choose ξ such that ∂β γ̄αβ = 0. How do you write the linearized
Einstein equations in this gauge ?
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3. (ξ, ∂tξ)|t=0 can be choosen freely. What would be the equation for them to have initially
γ = ∂tγ = 0 and γ0i = ∂tγ0i = 0 ?

4. Find some transformation to show that these equations on γ can be solved (having in mind
that we know how to solve an equation of the form ∆u = f).

5. Write the linearized constraint equations in term of γij and ∂tγij .

6. Using the same method as for Maxwell equation, or Eintein equation in wave coordinate,
show that the linearized Einstein equations can be solved in the wave gauge, with γ = 0 and γ0i = 0
everywhere. Such a gauge is called the radiation gauge.

7. Using the equation δR00 = 0, show that we must have γ00 = 0 everywhere.

8. We now seek plane wave solutions γab = Habe
ikµx

µ

, where Hab is a constant tensor field
and kµ a constant 1 form. What conditions should they satisfy to have a solution of the linearized
Einstein equations in radiation gauge ?
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