LIMIT EQUATION FOR VACUUM EINSTEIN CONSTRAINTS WITH A
TRANSLATIONAL KILLING VECTOR FIELD IN THE COMPACT
HYPERBOLIC CASE

ROMAIN GICQUAUD AND CECILE HUNEAU

ABSTRACT. We construct solutions to the constraint equations in general relativity using
the limit equation criterion introduced in [4]. We focus on solutions over compact 3-
manifolds admitting a S'-symmetry group. When the quotient manifold has genus greater
than 2, we obtain strong far from CMC results.
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1. INTRODUCTION

General relativity describes the universe as a (34 1)-dimensional manifold M endowed
with a Lorentzian metric g. The Einstein equations describe how non-gravitational fields
influence the curvature of g:

Ric,, — ?gw =8nT,,,

where Ric and Scal are respectively the Ricci tensor and the scalar curvature of the metric
g and T, is the sum of the energy-momentum tensors of all the non-gravitational fields.

Einstein equations can be formulated as a Cauchy problem with initial data given by a
set (M, g, K), where M is a 3-dimensional manifold, § is a Riemannian metric on M and
Kisa symmetric 2-tensor on M. g and K correspond to the first and second fundamental
forms of M seen as an embedded space-like hypersurface in the universe (M, g) solving
the Einstein equations.

It turns out that the Einstein equations imply compatibility conditions on g and K known
as the constraint equations:
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2 ROMAIN GICQUAUD AND CECILE HUNEAU

Scalg + (trg K)? — |K|2 = 2p, (1.1a)
divg K — d(trs K) = 4, (1.1b)

where, denoting by IV the unit future-pointing normal to M in M, one has
p:871":[‘#,,]\7"’]\/w7 jiZSWTi#NM.

We assume here that ;1 and v go from 0 to 3 and denote spacetime coordinates while
Latin indices go from 1 to 3 and correspond to coordinates on M.

In this article, to keep things simple, we will consider no field but the gravitational
one (vacuum case). As a consequence, we impose T = 0. We will also assume that
the spacetime possesses a S'-symmetry generated by a spacelike Killing vector field. This
allows for a reduction of the (3+1)-dimensional study of the Einstein equations to a (2+1)-
dimensional problem. This symmetry assumption has been introduced and studied by Y.
Choquet-Bruhat and V. Moncrief in [3] (see also [2]) in the case of a spacetime of the form
Y xS xR, where X is a compact 2-dimensional manifold of genus G > 2, St corresponds
to the orbit of the S'-action and R is the time axis. They proved the existence of global
solutions corresponding to perturbations of a particular expanding spacetime. In [3], they
use solutions of the constraint equations with constant mean curvature (CMC, i.e. constant
trg K ) on the spacelike hypersurface > x S' x {0} as initial data. The construction of
such solutions is fairly direct. In this article we shall generalize their construction to more
general initial data allowing for non-constant mean curvature.

The method which is generally used to construct initial data for the Einstein equations
is the conformal method which consists in decomposing the metric g and the second fun-
damental form K into given data and unknowns that have to be adjusted so that g and K
solve the constraint equations, see Section 2. The equations for the unknowns, namely a
positive function playing the role of a conformal factor and a 1-form, are usually called
the conformal constraint equations. Extended discussion of the conformal method can be
found in a series of very nice articles by D. Maxwell [13, 16—18].

These equations have been extensively studied in the case of constant mean curvature
(CMC) since the system greatly simplifies in this case. We refer the reader to the excellent
review article [1] for an overview of known results in this particular case. The non-CMC
case remained open for a couple of decades. Only the case of nearly constant mean curva-
ture was studied. We refer for example to the pioneer work [ | 2]. Two major breakthroughs
were obtained in [1 1], [15] and [4] concerning the far from CMC case. A comparison of
these methods is given in [8].

In this article, we follow the method described in [4]. Namely, we give the following
criterion: if a certain limit equation admits no non-zero solution, the conformal constraint
equations admit at least one solution. The other method [! 1, 15] would require that 3 is
S? so that it carries a metric with positive scalar curvature and has no conformal Killing
vector field, which is impossible.

This approach has been generalized to the asymptotically hyperbolic case in [9] and to
the asymptotically cylindrical case in [6]. The asymptotically Euclidean case [5] and the
case of compact manifolds with boundary [7] are currently work in progress since new
ideas have to be found to get the criterion.

The outline of the paper is as follows. In Section 2, we show how the Einstein equations
reduce to a (2 + 1)-dimensional problem in the case of a S'-symmetry and exhibit the
analog of the conformal constraint equations in this case. We also state Theorem 2.1 which
is the main result of this article and Corollary 2.3 which gives an example of application of
Theorem 2.1. Section 3 is devoted to the proof of Theorem 2.1. Finally, Section 4 contains
the proof of Corollary 2.3.
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2. PRELIMINARIES

2.1. Reduction of the Einstein equations. Before discussing the constraint equations, we
briefly recall the form of the Einstein equations in the presence of a spacelike translational
Killing vector field. We follow here the exposition in [2, Section XVI.3].

We recall that we want to write the Einstein equations on the manifold M = 3 x St xR,
where Y is a Riemannian surface and R denotes the time direction, for some metric g which
is invariant under translation along the S*-direction. We let 2 denote the coordinate along
the S'- direction (seen as R/Z), choose local coordinates z', 22 on ¥ and denote by x°
the time coordinate.

A metric g on M admitting 03 as a Killing vector field has the form

g =g+ e (da® + A)7,
where ¢ is a Lorentzian metric on ¥ x R, A is a 1-form on ¥ X R and ~ is a function on
3 X R. Since 95 is a Killing vector field, g, A and v do not depend on 3. We set F = dA
the field strength of A. The Ricci tensor Ric of g can be computed in terms of g, A and ~.
In the basis (dz®, do!, dx?, dx® + A), the vacuum Einstein equations (Ric = 0) become

— 1 ~
0 = Ric,p = Ricas — 5eQVFa AFgx — V2 57 — Va1V g7, (2.1a)
1 ~ .
0 = Ricys = §eﬂv5 (e*F, "), (2.1b)
. — 1 « ~a ~a B
0 = Ricgz = —e 27 (—462"’Fa5F P+ GPVarVsy +3 ﬁVi767> ,  (2.lo)
where the indices a, 3 and A go from 0 to 2, and are raised with respect to the metric g. The
equation (2.1b) is equivalent to d(xe3>YF) = 0. So we are going to assume that *e>7 F is

an exact 1-form. Therefore, there exists a potential w : ¥ x R — R such that e37F = dw.
Defining § = €27, we obtain the following system for g, v and w:

Ugw — W"‘y%w =0, (2.2a)

1 =0 =
Ogy — 5e*‘”v wVaw =0, (2.2b)

_ _ 1 _
Ricag —2VoyVgy — ie_MvawVBw =0, (2.2¢)

=2 . . . I
where Ug = s V.5 is the d’ Alembertian associated to the metric g, Ric is its Ricci
tensor and the indices are raised with respect to g. We introduce the following notation

ui=(y,w),
together with the scalar product

1
Oyu - 86u = 28a’y§57 + 5674"/80‘(,08500.

We are going to consider the Cauchy problem for the system (2.2). As for the general
Einstein equations, the initial data for this system have to satisfy some constraint equations.

2.2. The constraint equations. We write the metric g under the following form:
g=—N%dt* + g;; (dz' + p'dt) (dz' + pdt)

The coefficient N is called the lapse, while the vector ( is called the shift. ¢ is the
Riemannian metric induced by g on the slices of constant £. We consider the initial data
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for the spacelike surface > which is the constant t = 0 hypersurface of > x R. We also
use the notation

O = 0o — L3,
where Lg is the Lie derivative associated to the vector field 8. With this notation, the
second fundamental form of X C ¥ x R reads

1
Kij = *ﬁatgigw

We denote by 7 the mean curvature of X::

T = g” K ij-
The constraint equations are obtained by taking the J; — 0; and the J; — 0; components
of the Einstein equations:

——  Scal_

Ricy; — R N (9;7 — D'K;j) = Oyu - d;u, (2.3a)
——  Scal N? N2
RiCtt - %gtt = 7 (Scal - |}‘<’|2 + 7_2> = at’ll, . 5‘tu + 7§aﬂ8au . aﬂu, (23b)

(2.3¢)

where Scal is the scalar curvature of the metric g and D is its Levi-Civita connection.
Equation (2.3a) is called the momentum constraint while Equation (2.3b) is known as the
Hamiltonian constraint.

2.3. The conformal method. In order to construct solutions to the system (2.3), we are
going to use the well-known conformal method which we explain now.

Given a Riemann surface 3 of genus G > 2, we let gg be a metric on % with constant
scalar curvature Scaly = —1 and look for a metric g in the conformal class of gg:

g=e"go

for some function ¢ : ¥ — R. We also decompose K into a pure trace part and a traceless
part,

r
Ki; = 59ii + Hij,
and, following [3], we set
2u
u = %&u
The system (2.3) then becomes
) e2¥
VZHij =—u- 6ju + 7@7’, (2.4a)
1 1 S|
Ap + e 2% (2u2 +5 |H|2> - em% = (1 + |Vu|2) : (2.4b)

where V denotes the Levi-Civita connection of the metric g, A is the Laplace-Beltrami
operator of gy and from now on, unless stated otherwise, all norms are taken with respect
to the metric gp.

In order to solve Equation (2.4a), we split H according to the York decomposition (see
Proposition 3.2 for more details):

H=0c+ LW,
where ¢ is a transverse traceless (TT) tensor, i.e. try, 0 = 0 and Viaij =0, and LW
denotes the conformal Killing operator acting on a 1-form W:

LWij = Vin + VjWi — VkaQOij-
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The system (2.4) finally becomes

1 e
—EL*LW = —a-du+ TdT, (2.5a)
1 1 2 1
—2p [ 1.2 + 2 — 20 = 2
Ap+e <2u +2|0+LW> e 2(1+\Vu|), (2.5b)

where L* is the formal L2-adjoint of L:
1, )
LU LW, = VLW,

The equations of this system are commonly known as the conformal constraint equa-
tions. Equation (2.5a) is called the vector equation and Equation (2.5b) is named the
Lichnerowicz equation.

Given u, u, 7 and ¢ we are going to construct solutions to the system (2.5) for the
unknowns ¢ and W without any smallness assumption on 7. We follow the approach
of [4]. The main theorem we prove is the following:

Theorem 2.1. Given i € C°(X,R), u € C}Y(X,R) 7 € WYP(S,R) and 0 € WP a
TT-tensor, where p > 2, and assuming that T vanishes nowhere on ¥, then at least one of
the following assertions is true:
1. The set of solutions (o, W) to the system (2.5) is non-empty and compact in W2P (3 R) x
W2P(3,T*Y)
2. There exists a non-trivial solution V€ W?P (X, T*Y) of the following limit equa-
tion
1 V2 dr

2
— ZL*LW = a~= |LW]|
2 7|

3 (2.6)

Sfor some o € [0, 1].

Remark 2.2. Since the surface X is of genus G > 2, there is no conformal Killing vector
fields on Y. Therefore LW = 0 imply W = 0. In particular, there cannot be any non-zero
solution to (2.6) with « = 0, since in this case we would have

1 1
0:/ <W,—L*LW> dp° :—7/ |LW|* dpfe,
) 2 2 /s

which immediately implies that W is a conformal Killing vector field.
The proof of this theorem is the subject of Section 3.

Corollary 2.3. Assume that the mean curvature T is such that

dr

T

<1
L (3,T*%)

then there exists a solution to the conformal constraint equations (2.4).

See Section 4 for the proof of this corollary.

3. PROOF OF THEOREM 2.1

Before tackling the full system of equations in Subsection 3.3, we first study the prop-
erties of each equation individually, in Subsection 3.1 for the vector equation and in Sub-
section 3.2 for the Lichnerowicz equation.
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3.1. The vector equation. The main result about Equation (2.4a) is the following:

Proposition 3.1. Givena I-formY € LP(X, T*Y), there exists a unique W € WP (X, T*Y)
such that

1
—iL*LW =Y.
Moreover, W satisfies

W2 ren) S IYllLeres) -

Proof. We can write
—%L*LWJ» =V (ViW; + V;W; — kak?gOij)
= AW; + V'V, W; — V,;V'W;
= AW, + Ricy; W*
1
2

1
3.1) —5 L7 LW, = AW, — oW,

Scal
2

where we used the fact that in dimension 2, Ric =
useful in Section 4.
On W12(%, T*%), we introduce the following bilinear form

goi;- This Bochner formula will be

oV, W) = /E (LV, LW .

‘We have

a(V, W) = / (V, L* LW dp%
b

1
— —2/ <u AW — W> dpse
. 2

= / (2(VV, VW) + (V,W)) du®
>

It follows immediately that the bilinear form a satisfies the assumptions of the Lax-
Milgram theorem: it is continuous and coercive. So givenY € LP(X,T*X) C (Wl’Q(Z, T*E))*
there exists a unique W € W12(3, T*¥) such that —%L*LW =Y. It follows from ellip-
tic regularity that W € W2P (3, T*) and that Wiw2os sy SIY o resy- O

In particular, we get the following result:

Proposition 3.2. Given a symmetric traceless tensor H € WP, there exist a unique
TT-tensor o and a unique I-form W such that

H=0c+LW.
Proof. From the previous proposition, there exists a unique solution W € W?2? of
1
—iL*LW = divy, H.
Setting 0 = H — LW, we have
1
divg, 0 = divg, H — divg, LW = divy, H + §L*LW =0.

Therefore, o is a TT-tensor. O
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3.2. The Lichnerowicz equation. The aim of this section is to prove the following propo-
sition :

Proposition 3.3. Let 1, u and T be given as in Theorem 2.1. For any given symmetric
traceless 2-tensor H € L*°, there exists a unique positive function o € W?P (3 R)
solving Equation (2.4b). Further @ depends continuously on H € C° and is bounded from
below by a positive constant pg which is independent of H.

Before proving the proposition, we need to recall a general lemma on semilinear elliptic
equations. This is a simple version of the so-called sub and super-solution method we took
from [20, Chapter 14].

Lemma 3.4. Given an open interval I C R, we consider the following equation for ¢ on
3
Ap = f(z,0,X), (3.2)

where A € A is a parameter belonging to A, an open subset of Banach space, and f is a
function belonging to C°(X,R) ® C*(I x A,R), ie. f decomposes as a finite sum

f= Zaz )files A

where a; € C°(X,R) and f; € C1(I x A,R). We assume further that
. % >0,
o there exist constants ag,ay € I (that may depend continuously on \), ay < aq,
such that, for all v € ¥, f(x,a0,\) < 0and f(x,a1,X) > 0.

Then the equation (3.2) admits a unique solution ¢ € W?P(X,R), 2 < p < oo, for all
A € A. Further, p depends continuously on \.

Proof. We first prove the existence of a solution for all A € A. We denote by (2 the closed
subset of C°(M, R) defined by
Q={pecC'(M,R),a0 < <ay}.
We choose a constant A = A(X) > 0 such that
g
A> sup f( L0, A)
al] 8

(z,0)EX X a0,

and define amap F' : Q — C%(M, R) as follows. Given g € €2, we define F(pq) := 1,
where 1 € W2P(X,R) is the (unique) solution to the following linear equation:

—Apr1 + Apr = Apg — f(x, 00, N).
We argue that 1 € € as follows. We have
—Ap1 + Ap1 = Apo(z) — f(z, 90, A)

wo(z) of
:/ (A_(xa807)\)) ng—f—Aao—f(I‘,ao,A)
aop aSD
>0
> AaO - f('ra ao, A)

> Aayp;
—A(p1 —ag) + A(p1(x) —ag) > 0.

We set (p1 —ap)— := min{0, ¢1 —ag }. Multiplying the previous inequality by (1 —ag)—
and integrating over X, we get

/E[‘(@1—ao)fA(<P1—ao)+A(<p1( ) —ag)* ]du"’<0

‘/E|:|v(801_a0)7‘2+14((p1( ) —ag)? }dug <o,
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from which we immediately conclude that (¢1(z) — ag)_ = 0, i.e. that ¢1 > ag. A
similar argument proves that ¢; < a;. Hence F' maps {2 into itself.

We note that for fixed \, F' maps 2 into a bounded subset of W27 (%, R). This comes
from the fact that ¥ X [ag, a;] is a compact set over which f(-,-, \) is continuous so
f(x,p, ) is bounded independently of ¢ € Q and « € X. Hence, by elliptic regularity

IE@ w2z S 1 (@0 Mo s r)
< 1.

Denoting by ' the closure of the convex hull of F(2), it follows from the Rellich
theorem that ' is a compact convex subset of C°(X,R). By the Schauder fixed point
theorem, F' admits a fixed point ¢. The function ¢ then satisfies

—Ap+ Ap = Ap — f(x,0,\)
< ASO = f(x,@,)\)

Hence ¢ is a solution to (3.2) and by elliptic regularity, o € W2P(X,R).
We next prove that the solution to (3.2) is unique given A € A. It follows then that
ag < ¢ < ap. Assume given 1, @9 two solutions to (3.2). We have

0= *A(QO? - 501) + f(xa992a )‘) - f(x’(ph)‘)

1
= —Ap2 — 1) + (2 — am)/o %(w‘,wl + y(p2 — ¢1))dy,

>0

from which we immediately conclude that 1 = @o.
We follow a similar strategy to prove that ¢ depends continuously on A. We fix an
arbitrary A\g € A. There exists o > 0 such that

0

%(‘Tv ®, )‘0) Z «
for all (z,¢) € ¥ % [ag(Ao),a1(No)]. There exist an 79 > 0 and af,a} € I such that
By, (Xo) C A, af < ag(X), ay > ar(A) forall A € By, (\o) and

af o
7 ’)\ > —
on X X [ag,ai] x By, (Ag). We denote by ¢ the solution to (3.2) with A = Ag.
For any € > 0, there exists 7 > 0, n < 19 such that
€
|f (2,00, A1) = f(, 00, Ao)| < 5

forall x € ¥ and all A € Bn()\o). We denote by ¢, the solution to (3.2) with A = Ay for
an arbitrary Ay € B, (Xo):

—Ap1 + f(z,01,M1) =0
Subtracting both equations, we get

0= 7A(901 - SDO) + f(x7<)017>\1) - f(anﬁoon)

= _A(<p1 - 900) + f(xagola)\l) - f(xaspo,)\l) + f(xa 500,)‘1) - f(x75007>‘0)
3.3)

{ _AQOO + f(x,QUOyAO) =0

1
0
0= —A(p1 —¢o) +/o é(%@o +y(p1 — wo), A1 )dy(w1 — o) + f(x, 00, A1) — (2,00, Ao)-
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From our assumptions, we have

1
0
/0 %(%@0 +y(p1 — o), A1)dy > %_

Multiplying Equation (3.3) by (o1 — @9 — €)4+ = max{0,¢1 — @9 — €} > 0, and
integrating over X, we get

/z (f(x, 00, Ao) — f(2,00,A1)) (1 — w0 — €) 1 du?®
— [ [ =90 0. V(o1 = eu - 0)
1
+ /o gi(%@o +y(p1 — o), A)dy(p1 — 9o) (1 — ¢o — 6)+] dps°,
/ %(901 — o — €)+dp®
>

«

> [ (V61— o=+ Gor = palior =90 = 0]

«

0= / [1V(p1 = 00— 41" + 5 (01 = 90 — 4% du™

Hence ¢1 — ¢ < €. Similarly, ¢1 — ¢¢ > —e. This proves that the function ¥ mapping A
to ¢ solving (3.2) is continuous from A to C°(X, I). It then follows at once from elliptic
regularity that W is continuous as a mapping from A to W2?(X, R). ]

We refer the reader to [14, Section 6] for much stronger versions of the sub and super-
solution method. We can now give the proof of Proposition 3.3:

Proof of Proposition 3.3. The Lichnerowicz equation (2.4b) can be rewritten in the form
(3.2):

1 1 L |
Ap =—e2% <2a2 +5 |H|2) + 62*’% -3 (1 + |vu\2) .
=f(z,p)
Since 72 is bounded away from zero, the assumption g—i > (0 is readily checked. Choosing
ap := —maxIn |7|, we have
2
2(10L < 1
e T
So
2 1 9 1 1 1
< 2‘10——7<1 v ><7—7<—7.
flwao) s e =g (L IVT) < g =5 =74

Since f is increasing with ¢, we immediately get that if ¢ < ag, then f(z,p) < 0. Since
72 is bounded away from zero we can found a; > 0 be such that

2
9g, MINT 1 2 1,..9 1 9
e = > S (14 IVl ) + 5 il + 5 1H -

Using the fact that we choose a; > 0, it is a simple matter to check that

flx,a1) >0

and hence if ¢ > aq, f(z,¢) > 0.
As a consequence, the Lichnerowicz equation satisfies the assumptions of Lemma 3.4.
This completes the proof of Proposition 3.3. (]
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3.3. The coupled system. Following [19], we use Schaefer’s fixed point theorem to study
the coupled system (see [10, Chapter 11]):

Theorem 3.5. Let X be a Banach space and ® : X — X a continuous compact mapping.
Assume that the set

F={xeX,3pel0,1],z=pD(x)}
is bounded. Then ® has a fixed point:
Jz e X,z = ®(x),
and the set of fixed points is compact.

We choose X = C°(X, R) as a Banach space and construct the mapping ® as follows:
Givenv € X,

e From Proposition 3.1 there exists a unique W := W (v) € W2P solving

1_, . 02
— §L LW = -4 - du+ 5d7’7 34

which is Equation 2.5a with e® = v. Further W depends continuously on v € C°
for the W2P-norm.

e W € W?P can then be continuously mapped to H := o + LW € Wh»

e and, in turn, H can be compactly embedded into C°.

e Proposition 3.3 yields a unique ¢ € W?2? solving the Lichnerowicz equation (2.4b)
with the H we previously found.

Setting ®(v) := e¥ € C°(%,R), we loop the loop providing a continuous compact map
® : X — X. Thus, we are almost under the assumptions of Theorem 3.5. All we need to
check is that the set ' is bounded. This is the content of the next proposition:

Proposition 3.6. Assume that the set
F:={veL*X,R),3pe[0,1],v = pP(v)}
is unbounded. Then there exists a constant po € [0, 1] and a non-zero W € W?P such that

pepw = V20w

2 2 |7]

Proof. Assuming that F' is unbounded, we can find sequences (p;);>o and (v;);>¢ such
that 0 < p; < 1, v; = p;®(v;) and |Jvs]| o — 00. Setting ¢; = log(®(v;)) (i.e.
v; = p;e¥?), and defining W; as the solution to (3.4) with v = v;, we get the following
equations:

1 9 g2

—iL*LWi = —U-du+ p; 5 dr, (3.5a)

1 1 S|
Apite 2 (24 Z o+ LW,? ) = e T = (1 + \Vu\2> . (3.5b)

2 2 4 2
Following [4, 9, 19], we set y; := ||e¥*|| . and we introduce the following rescaled

objects:
1

Vi = i — log(vi), Wi = ?Wz
Note that since we assumed that ||v;||;.c = pivi — 00, with 0 < p; < 1, we also
have that y; — co. We will assume without loss of generality that ; > 1. The following

equations for 1; and Wi follow from the definition:
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—~ 1 245
——L*LW,; = ——u - du+ p} dr,
1 1 1o = 1
— A, Wil a4 | =+ LW = 21#17_7(1 A% 2)
%2 P te (27141/4 +2 7¢2+ i € 4 271‘2 +‘ u‘ )
(3.6a)
(3.6b)
Note that ||ewi Lo = ’ ; eri = 1. Hence, from Proposition 3.1 applied to (3.6a),
7 LOC
we have
— 1 29;
HWi §H—2u-du+p§€ dr
W2.p Vi 2 Ip

1.
S oz lle-dull g +[ldr|l
K3

N

1.

Consequently, W; is bounded in W2P. Since the embedding W2? — C? is compact,
we can assume, up to extraction of a subsequence, that W; converges to some W, € W?2?
for the C'-norm. We can also assume that p; — poo € [0, 1]. All we need to do is to prove

. LWa
that e2%¢ converges in L™ to f. := /2 | |

7]

Indeed, passing to the limit in Equation (3.6a), we get that /WOO satisfies

1 * T TA7 2 f
S L LWa = 2 72 dr
2 .~ d
3.7) - ipio ‘LWOO‘ a
2 7|

Hence, WOO satisfies the limit equation with o = p2 . Since €% has L>-norm 1 and
converges in L™ to foo, we have || foo|| ;oo = 1. In particular, LW # 0 which proves
that Wao Z 0.

To prove convergence of €2¥i to f.., we show that for any € > 0, there exists an i such
that

|62¢i _ foo’ <e

for all 7 > i¢. We do it in two steps:

e We first show the upper bound
e2vi < foote
by selecting a smooth function f such that

foot 5 S Ju S foote

and proving that for ¢y large enough, ¥, := % log(f+) is a super-solution to (3.6b):

297

1 1 1o —~
—A R (R (A AT
FovrTe (%Z‘u Tl

2 2
1
<e+l vul?).
)_e 1 (1+\ u\) (3.8)
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Since foo > 0, f+ > 2 0 14 is a smooth function. In particular, |At). | is bounded
Moreover, since W — WOO in C' and ; — oo, we have

— 2
o ‘LWOO‘

% + LWi
as ¢ tends to infinity. So the condition (3.8) can be rephrased as
1), |2 2
o) + 5 [LWa| = 12 <0,

where o(1) denotes a sequence of functions tending uniformly to 0 when i — co. We have
2

Bz (fets) 22+ 5

This yields, for ¢ big enough
2.2
e .

2 2 2
o)+ 2| = T2 <0 (1)+T4f§o—74(f30+1)§o(1>— <

2 := infy, 72 is positive by assumption. Therefore 1/ is a super-solution to Equa-

where 73 :
tion (3.6b) and we obtain, for ¢ big enough
29 29 u? 1 ? 2 29 29
A — ;) < — (e 2+ — 7 2Wi — 4= W - + _ i
1
§L62w1(¢+7w1)/ AW+ =) g\
4 L2+1 LW,JFEZ 672%(1/1 w,)/leQA(ﬂ’eri)d)\
¢ T2 T
7 o [ L 8 PR P LSV
< 5¢€ 1Ae VAN + Py 2‘LW¢—|—%2 e /0 e +TPAN (Vg — ).
>0

The maximum principle implies that ©; < 14, for ¢ big enough, so
e*Vi < foo te

e Second, we show the lower bound
Vi > foo — €

We have to be more careful than for the super-solution, since f, can vanish somewhere

Let A be a smooth open domain such that
3e? 2¢2
{mz¥lcac{n=2)

Denote by 7 the distance to J.A. On A we have

2 2 2
poes f @
2 3 2 6
Let f_ be a smooth function on A such that
e we have the inequality, f2 — €2 < f2 < f2 — %,
o [ >0,
e in a neighbourhood of 9.4 we have f_ = ee+. This is compatible with the first
point since
2 2
f2 -t < 3%—6 < - ondA.
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On A, we can define 1) = % In(f_). We want to show that the following inequality is
satisfied on A:

1 1
AfA ~2y_ 24t
7Y te (274 +

2 7_2
—eM-— >0.

|2 2y T2 1 )
>e T 22 (14 |Vul*). (3.9
Since e2¥~ > 0 on A, this is equivalent to showing

1 5y 1 1 o =
72-26 <A1/J + = (1+\Vu| )> (27474 +2 72+LW1

g

We calculate
VI’
f-
Since f_ = ee~ /" in a neighbourhood of 9.4, we see that e>~ At)_ is bounded on A.
Therefore, as for the upper bound, the condition (3.9) can be written

v T
4
On A we have ¥~ < f2 < fgo — 5. This yields, for ¢ big enough,

¥¢&A;Pﬁ

1
dn+§wwgﬁf > 0.

1 o ap T 7’22_7‘2(2_6) 72 €
o(1) + 5| EWacl2 = =T 2 o(1) + T2 - T (12 - £) 2 0(1) + -5 20
Since ¥_(z) — ;(x) — —oo when  — OA, ¥_(x) — ;(z) attains its maximum on

A. Therefore, since v _ is a subsolution, we can apply the maximum principle on A, to
deduce that 1) < ;. This yields on A

f2 - < etvi,
On the complement of A we have
fgo — 2 <0< et

This concludes the proof of the convergence in L of % towards f.. (|

4. PROOF OF COROLLARY 2.3

To prove Corollary 2.3, all we need to do is to prove that the limit equation (2.6) admits
no non-zero solution under the assumption
dr

T

< 1.
Lo (S,T*%)

We take the scalar product of the limit equation with W and integrate over 3. From the
Bochner formula (3.1), we get:

—f/|LW| duso = \[/|LW|< = |>du90

dr

/ VW / WP du® < av/3 / o[22 s
> b >

2
- |W|2dlu90

IN

a/ |VI/V|2d,ug0 —l—%

/ W [2dgo,
LOO

IN

T

1
,/ \W|2dug°
2Js

«
2
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where we used the well-known inequality ab < 2 4+ ¥ witha = V2 VW] and b =

2 2

|%| |[W|. The last inequality immediately yields that W' = 0 since we assumed that

I

L.

2.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

2. <tanda € [0,1].
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